
 Advanced search

Linux Journal Issue #19/November 1995

Features

Optimizing the Linux User Interface by Jeff Arnholt
Create a more efficient desktop with frwm and tcsh.

LessTif and the Hungry ViewKit by Malcolm Murphy
The efforts of the Hungry Programmers are making the Motif
widget set available to Linux users.

Getting the Most out of X Resources by Preston Brown
Always wanted to change the look of X Windows? Here are the
tools to do it easily.

News & Articles

How to Build a Mac by Andreas Schiffler and David Moody
The Best Without X by Alessandro Rubini
Linux on Low-End Hardware by Trenton B. Tuggle
Linux Serving IKEA by Anders Ostling
Linux at the SCO Forum by Belinda Frazier

Reviews

Product Review IGEL Etherminal 3x by Michael K Johnson
Book Review Teach Yourself Perl by David Flood

Columns

Stop the Presses Elf is on the Way by Michael K. Johnson
New Products

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/019/1091.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/1123.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/1154.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/1031.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/1090.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/1144.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/1176.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/2608.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/1167.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/0077.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/0080.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/0083.html

Linux System Administration Using LILO by Æleen Frisch

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/019/1166.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Optimizing Linux's User Interface

Jeff Arnholt

Issue #19, November 1995

Jeff provides a handy guide to X-Windows window managers and tells you how
to customize them.

One of Linux's most impressive but least recognized features is its flexible and
powerful desktop environment. While great efforts are underway to develop
the next generation of desktop interfaces (such as OSF's Common Desktop
Environment or Microsoft's Windows 95 and Bob), Linux enthusiasts have for
years had a choice of several stable, powerful, and customizable window
managers and shells for program management.

Unlike many other operating systems, Linux runs extremely well on standard
VGA 80x24 terminals. While unglamorous and less intuitive, Linux's terminal
interface provides speed and ease-of-use still unmatched by GUIs. Linux uses
mature, powerful shells such as tcsh and bash, which elegantly display and
manipulate text at blazing speeds on any PC. Linux's text mode support is
particularly appropriate for portables with small screens, slower processors,
and little memory. [See “The Best without X” in this issue, page 22—Ed]

The reduced requirements for character-mode displays also enables Linux to
run very well off of floppy drives, which has great utility for creating bootable
emergency repair disks or running Linux on non-Linux PCs. Linux's text mode
support is inappropriate for graphical applications like Netscape or WYSIWYG
word processors, but is superior for system administration and text editing
tasks due to its versatility, speed, and uniform support.

At the other end, Linux supports a wide number of X-Windows servers on large
monitors at resolutions up to 1600x1200. Linux's X-Windows client-server
technology offers the superb capability of displaying graphical applications
locally which run remotely, a feature unmatched by other PC operating
systems. X-Windows is also notable for the extreme amount of customization
available through resource files. For example, as a left-handed mouse user I

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

commonly switch the scrollbars of my X-Windows applications to the left side,
which cannot be done with other operating systems. With native support for
three-button mice, multiple displays, and a myriad of free window managers,
Linux provides more powerful and flexible desktop interface options than most
other operating systems.

Unfortunately, the Linux interface suffers from the inevitable tradeoff of
flexibility and power for ease-of-use. Many Linux users continue to use default
X-Windows or shell configuration files, unaware of alternative interface tools or
configuration options which can simplify or enhance their current setup. I have
encountered many Linux users who are unwilling to modify their installation
because of arcane configuration file syntax and lack of knowledge on this
subject. This problem continues to increase as more people without Unix
training migrate to Linux.

This article describes strategies for desktop interface configuration and
utilization under Linux. These strategies are based on a simple premise: the
optimal desktop environment is one which maximizes data visualization and
screen utilization (output) while minimizing the amount of time, interaction,
and complexity required to perform a given task (input). Utilities which are
frequently used must be immediately accessible to users with a few keystrokes
or button clicks. Less commonly used utilities need not be as accessible but
should be well-organized such that they are easily located and started. Utilities
should optimize screen usage to permit monitoring and interaction with
multiple, concurrent processes. Finally, all interface tools must make minimal
usage of memory and CPU resources.

Having tested the majority of Linux window managers and shells over the past
several years, I am most impressed by rxvt and fvwm, John Bovey's and Robert
Nation's (fvwm@wonderland.org) xterm clone and window manager, as tools to
manage my desktop environment. I use Tcsh, written by multiple authors,
within rxvt, although Bash, GNU's “Bourne again shell”, is a fine alternative.

The Command Line

While I prefer most graphical programs to their command line alternatives
(ftptool instead of ftp, for example), terminal windows continue to provide
three important uses. First, most of my routine system administration tasks are
performed with homegrown perl and shell scripts running in a term window.
While many fine GUI program builders are available (such as Tcl/Tk), it is still
simpler to program shell scripts for command line input and output. Complex
networking, file management, searches, or other system activities are most
easily performed in this manner. Second, even as SLIP and PPP become more
widespread, wider support and better responsiveness exists for terminal-based
serial line communications.

mailto:fvwm@wonderland.org

Finally, terminal windows usually provide much faster interaction than GUI
alternatives. It is much easier and faster to type “date” at the command line
than to open an Xclock (which requires more keystrokes), move it and/or
minimize it, read it, and then close it. In addition, programs which do not
require much user interaction are best run as command-line applications to
avoid the additional resources and programming complexity required by
graphical applications. Linux's terminal windows serve as master interfaces for
all programs without sophisticated input/output requirements and eliminate
the need to open multiple windows for different tasks.

Rxvt

I prefer rxvt to xterm as an X-Windows terminal emulator. Rxvt provides a
subset of common xterm features with substantial memory savings. The
amounts of physical memory required by xterm and rxvt, as reported by top (a
program that displays CPU activity), are 2120KB and 560KB, respectively. Since I
commonly run three to four X-Windows terminal sessions simultaneously, I
save approximately 6MB of memory by using rxvt. Rxvt does not support
Tektronix 4014 emulation or session logging, but this is seldom a concern.

Tcsh

Tcsh has enough features to merit another article, so I will concentrate on just a
few aspects with respect to its user interface functions. Most notable is its
excellent support of Emacs-style command line editing. Typographical errors
are easily corrected by moving the cursor to the error with the arrow keys and
using editing commands such as ctrl-D or ctrl-K to make the modification.
Previous commands can be edited in the same fashion by first scrolling back
through the history list using the up arrow. Filename completion is enabled by
putting set filec in .cshrc (the tcsh configuration file located in the user's home
directory), which enables the user to type in just a few characters of a long
filename and press tab to complete the remainder (assuming those characters
are unique). This feature has become so useful and natural to me that I find
myself constantly pressing tab in situations which do not support it, such as
remote ftp session or when I need to work under MS-DOS. As an example, If I
want to view the contents of text file OptimizingLinuxUserInterface, I simply
type cat Opttabreturn, and the filename is completed for me—unless there is
another file with those first three characters. In that case, I need to supply
additional characters.

Tcsh also has advanced ways to set the prompt, which I use to keep track of the
present working directory (indentation is important). From my .cshrc:

:set prompt = '\n%B%n@%m%b:%/ %h %# '

gives: root@regal:/home/root 27 #

when working as the user root on the machine regal in the directory /home/
root with a current history command number of 27.

I also like the ctrl-alt-Z shortcut tcsh provides to allow me to jump from the
shell to a suspended version of Emacs and ctrl-Z to bring me back to the shell. It
has eliminated my dependence on Emacs's internal shell, which displays some
non-standard behavior regarding key assignments.

Having been accustomed to command.com for many years, my favorite feature
of tcsh and other Unix shells are aliases. As have most Linux users, I've aliased
extremely common commands such as ls, ls -l, rlogin, and less to l. ll, r, and t
(short for type). This is easily done in .cshrc with lines like

alias rlogin 'lr'

Here are a few useful and representative selections from my .cshrc for file
viewing, process logging, telnet access, floppy formatting, and remounting the
hard drive if it boots read-only (note: the last one comes up all the time
frantically in Usenet's comp.os.linux hierarchy).

:
alias t 'expand -5 \!* | less'
alias pss 'ps -au | grep $user | less'
Syntax: pss <user>
alias archie 'telnet archie.internic.net'
alias formatfd0 'echo "Using ext2 filesystem."
 fdformat /dev/fd0H1440;
 mkfs -t ext2 /dev/fd0H14440'
alias remountroot 'set temp = $PWD; cd /;
 mount -w -n -o remount /;
 cd $temp'

Excellent shell tools such as tcsh and rxvt are one reason why I consider Linux's
interface to be superior to most non-Unix operating systems. DOS, Windows,
NT, and even the Mac do not offer this powerful and fast means for program
and system interaction.

Fvwm

Fvwm is an excellent choice for a window manager, providing most or all of the
functionality of Motif in far less memory (like rxvt compared with xterm). Fvwm
was derived from twm code, but designed to use fewer system resources.
Informal tests with top show that fvwm uses 700KB of physical memory (RSS)
compared to OpenLook's 900KB, twm's 1700KB, and mvwms's (Motif) 1900KB.
Not even the author still remembers what fvwm stands for, although I've often
heard “feeble virtual window manager”. This is an unfortunate name, since

fvwm is far from feeble. [I suggest that this is why the author chooses not to
remember what it stands for. —Ed]

Fvwm employs a virtual desktop like olvwm with a maximum size of 32KB pixels
squared (I doubt anyone would ever take advantage of such gargantuan
proportions), and has a look and feel very similar to Motif. Sticky windows can
be assigned which stay on the screen regardless of which virtual desktop is
currently being viewed. As with Motif, resizing windows invokes a helpful grid
showing the changing dimensions of the window. Shaped windows are
supported, but increase memory utilization by 60KB (I don't use these).

Fvwm utilizes “modules”, a concept not shared by other window managers.
Modules are separate programs which may be independently developed, yet
which are integrated into fvwm. Modules run as separate Linux processes,
spawned by fvwm such that a pair of pipes are used to transmit commands
back and forth for execution. While this design may be superior for window
manager programming, it is particularly important to the average Linux
enthusiast because it provides more functionality than most window managers.

Fvwm's man page is very long (36 pages) and complete. More important, the
sample configuration file which comes bundled with fvwm is crammed with
comments and useful defaults. Fvwm is like other window managers or X-
Windows applications in that great control may be exercised over almost every
aspect of display. Window color, border size, and window behavior are easily
specified in the .fvwmrc or .Xdefaults file. Specific directions for such
modifications are available in the default .fvwmrc file. Configuring fvwm should
not be difficult.

I find that the most useful desktop interface feature offered by fvwm (and most
other window managers) is its root menu. Customization of the root menu
provides easy access over almost every aspect of the system. On my Linux
workstation, the first five root entries (Apps, Docs, Desktop, Network, and
System) are pointers to submenus.

Apps contains all productivity X-Windows applications, like xemacs, xv, etc.

Docs are common ASCII documents which I constantly need to access, such as
my to-do list. I also use this submenu to organize the many, many ASCII
configuration files used by Linux. Since I have Emacs running at all times, the
.fvwmrc statement controlling this entry runs emacsserver:

Exec "To do list" exec emacsclient /home/root/todo &

Emacsserver then loads the running Emacs with my document and switches
buffers to display the new document. This method saves memory and
minimizes the number of windows on my screen.

Desktop modifies the appearance of the screen and is used to invoke screen
savers and change backgrounds. For example, I can call each of the different
xlock screen savers in my .fvwmrc with:

Popup "DesktopScreensavers" Exec "Fractal Flame" exec xlock -nolock -nice 0 -

mode flame & Exec "Game of life" exec xlock -nolock -nice 0 -mode life & ...

EndPopup

I can load and automatically expand any graphic to serve as background
wallpaper with:

Exec "Starry skies" xv -root -max -quit /data/wallpaper/VanGogh1.jpg

or create a texture (a small graphic which may be tiled to give an interesting
background) with:

Exec "Red brick wall" xv -root -quit /data/wallpaper/redbrick.jpg

Network runs any of the common browsers or utilities, such as FTP, Archie,
Gopher, etc. I also use this menu to access the different network daemons
currently running.

System lists a wide variety of utilities involved with system administration. For
those of you familiar with Windows 3.11, this entry is similar to, but
substantially more powerful and customizaable than, the control panel applet.
One entry in the submenu runs my perl backup script in a new rxvt window;
another opens the excellent keyboard mapping utility xkeycaps:

Exec "Keyboard mapping" exec xkeycaps -keyboard DELL &

Other entries in my root menu start the screen blanker (I have a Nokia monitor
which powers down upon receiving a black screen), refresh the window, and
exit fvwm.

For an excellent (albeit expensive) reference to extensive root menu
customization, see The Shell Hacker's Guide to X and Motif by Alan Southerton.

GoodStuff

The GoodStuff iconbar is truly one of the most useful Linux utilities I have ever
found. GoodStuff is a fvwm module and only runs under fvwm. GoodStuff is an

iconbar extremely similar to that found on the NeXT and to a lesser extent like
Window's Dashboard or RipBAR. GoodStuff uses approximately 500KB of
memory and very little CPU resources. The configuration file is the same as
fvwm, .fvwmrc.

GoodStuff's primary use is simply to assign iconic buttons to commonly-used
applications so that they may be started with a single mouse click. For example,
I have rxvt terminals assigned to each machine in my home network which I
can immediately log into. This is substantially faster than my old method of
typing xterm, moving the mouse into the window's field of view, clicking for
focus, typing rlogin machine name, and then entering my password.

I also have common utilities, such as my mail utility, ftptool, Emacs editor,
netscape, file manager, and so forth attached to individual buttons. I limit the
GoodStuff iconbar to a dozen buttons (laid out in a 2'6 matrix), because each
one takes valuable screen real estate, especially since I have it set permanently
in the foreground. Rxvt, my most commonly started application, is not included
in GoodStuff but instead is mapped to the middle mouse button on the root
window. I can immediately pop up a new rxvt window by simply clicking the
second button on the background wallpaper. Less commonly used programs
are attached to the root menu (as described in the previous section).

Button bars are hardly novel. What is special about GoodStuff is that one may
assign running X-Windows applications to each button and use the button as
the display. For example, I have xload running as a 2x1 button at the top of the
GoodStuff menubar, and it displays just as it would in a small window. I have
xbiff in another window, which alerts me if mail has arrived (the button's color
becomes inverted, and it is very noticable). I even have a less well-known but
equally useful X-Windows app called xosview which monitors instantaneous
CPU, memory, disk, and network usage as a small colored bar graph. It is very
helpful for me to watch this program running in the GoodStuff button bar to
see when I'm taxing the network or CPU or running out of memory or disk
space. All I needed to do to incorporate xosview into GoodStuff was the
following line in the .fvwmrc:

*GoodStuff - whatever Swallow "xosview" xosview -bg grey -geometry

210x96-1500-1500 &

I also have fvwm's 2x2 virtual desktop at the bottom of the GoodStuff menu
bar. I don't use it all that often, but it is a handy feature when needed.

Other fvwm modules exist, including Pager, Banner, WinList, Clean, Ident, Save,
Scroll, Debug, and Sound. I don't use them as much as GoodStuff, but they are
all useful utilities.

Conclusions

The strategy described above uses fvwm, tcsh, and other utilities to generate an
effective desktop interface to manage programs, data, and system resources.
While lacking in certain features, such as drag-and-drop desktop tools and
object-oriented metaphors, the combination of these tools creates a desktop
which is more flexible, customizable, and powerful than competing paradigms.
Current versions of these tools are freely available at many Internet sites
including ftp://sunsite.unc.edu/pub/Linux.

Jeff Arnholt is currently developing X-based biomedical imaging packages at the
Mayo Clinic in Rochester, Minnesota. He is a medical and graduate student who
hopes to earn his MD/PhD degrees by 1997. You may contact him at
arnholt@mayo.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:arnholt@mayo.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/toc019.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

LessTif and the Hungry Viewkit

Malcolm Murphy

Issue #19, November 1995

The efforts of the Hungry Programmers are making the Motif widget set
available for Linux users.

One of the nice things about running Microsoft Windows is that all your
applications look and feel the same. You know that there will be a bar at the top
of the window with some pull-down menus, that Alt-F4 will quit, Ctrl-X will cut,
Ctrl-V will paste, and so on. Even with a brand new piece of software, everything
looks familiar, and you don't have to spend time getting used to a new user
interface before you can start to use the application.

Compare this with the X world, where it seems that no two applications look
the same, and you often have to spend a few minutes familiarizing yourself
with the controls, even with programs you have used before. Why is there such
a difference in the appearance of X applications, when it could be argued that
the Graphical User Interface (GUI) of a program is one of its most important
parts?

The most basic tool for X programmers is Xlib, the X programmer library. It
effectively hides the details of the X protocol from the programmer in a library
of C subroutines. However, Xlib routines are very low level. The idea behind Xlib
is to give the programmer a convenient environment while offering the full
flexibility of the X window system. In particular, the programmer has to
implement his/her own user interface. There are two important consequences
of this. Firstly, there is a lot of work for the programmer, since common
components such as scrollbars, buttons, etc. have to be written from scratch.
Secondly, it means that different applications look and feel very different, since
programmers implement their own GUIs according to their own personal taste.

The designers of X addressed the first problem by providing Xt, the X Window
toolkit. This provides a set of functions that handle the user interface and other
X-related sections of an application program, such as window creation and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

event handling. Xt provides routines at a higher level than Xlib, making life
easier for the programmer. Although Xt is written in C, it has an object-
orientated approach to the problem. The functions in Xt appear as self
contained program units called widgets. Widgets are arranged in classes, and
each widget class performs one particular type of task. Some widget classes
provide the on-screen GUI components (scroll bars, buttons etc.), while others
assist with managing the overall layout of the GUI. For example, the HTML
interpreter of NCSA Mosaic is implemented as a (very complicated) widget.

Xt consists of two layers, the Intrinsics layer which provides an environment in
which widgets can be created and managed, and the widgets themselves, which
are usually packaged as a widget library. Several widget libraries exist, the most
commonplace being the Athena widget library, which is provided as a part of X
as an example widget set. The Athena widget library has been widely used,
especially in public domain software, because it is widely available and free.
Unfortunately, it consists of only a few basic widgets, which are often
considered to be quite ugly.

A well developed and popular widget set is provided by the Open Systems
Foundation as part of OSF/Motif. Motif provides literally hundreds of widgets,
and is used in a lot of X application software. The recent cross-vendor COSE
agreement describes a GUI style which is heavily based on Motif. One possible
consequence of this agreement is that we could start to see X applications with
a consistent look and feel, even though they are running on different hardware
with different operating systems. This would help shake off some of the
antipathy that is directed at the X window system.

There is a danger that all this could pass the Linux community by. Motif is
typically bundled with commercial Unix/X systems, but since it is a commercial
product, it does not come as part of XFree86. Several versions of Motif are
available for Linux users, retailing in the region of $100—$200, but it is
probably fair to say that most Linux users are quite happy to do without Motif,
rather than pay for it. After all, we have a free operating system, a free C
compiler, a free DOS emulator, a free windowing system, and so on. $100 for
Motif? No, thanks.

However, Motif is already the de facto standard in the rest of the Unix world,
and the reliance on Motif is likely to increase with the COSE agreement. While it
is possible (depending on their licensing arrangements) for vendors to
distribute statically compiled binaries of applications that use Motif, it would be
preferable for everyone to have their own copy of the library. It is highly
unlikely that the OSF is going to make Motif available free to Linux users, but
this is where LessTif comes in.

LessTif is an active project of a group called the Hungry Programmers. It is
intended to be a free widget set with exactly the same look and feel as the
Motif library. More importantly, it will be source code compatible with Motif, so
that the same source will compile with both libraries and work exactly the
same. At the time of writing, the current focus is on getting the functionality of
the Motif 1.2 widgets. When that is done, the intention is to add some of the
features of Motif 2.0, and possibly other extensions. The speed of development
of the code is quite astonishing. New releases are made weekly, and there is an
active mailing list where patches and improvements are sent in the meantime.
The main developer of LessTif is Chris Toshok of the Hungry Programmers, but
many others are contributing to the project, and new contributors and bug
reports are welcome.

The developers of LessTif are working only from descriptions of Motif 1.2
available in books and header files—they have no access to the “real” Motif
source. Some of the developers have Motif libraries, so they cay compile
applications against both libraries and compare the results. At the time of
writing, LessTif still is at alpha status—we are still a long way from being able to
compile and run most Motif applications using LessTif. There is a list of
programs known to compile, link, and run with LessTif, but it is quite short at
the moment. Other programs compile and link, but are still a long way from
being usable. It is unrealistic to expect the developers to be able to give firm
release dates, since for most (all?) of them, LessTif is a spare time project, but
the developers hope that a usable release will be available in the reasonably
near future; perhaps even this year. It looks very likely that the LessTif project
will eventually succeed in its aims, and that Linux users will have access to a
free Motif-like library.

The combination of the Xt toolkit with a suitable widget set still only addresses
part of the problem. It provides the programmer with the building blocks for a
user interface, but the responsibility for actually constructing the interface still
lies with the developers of each individual application. In recent years, users
have come to expect many features from their programs, such as context-
sensitive on-line help, drag-and-drop facilities, and inter-application
communication—and they expect to see them work the same way between
different applications.

While there are guidelines for constructing such high-level elements, such as
the OSF/Motif style guide, these guidelines are often written without
consideration of the tools available to the programmer. Without a suitable set
of tools with which to work, each developer will inevitably interpret the
guidelines differently as they implement a user interface from the lower level
building blocks provided by Xt and a widget library. Another factor is that the
widget set being used may pre-date the style guidelines the programmer is

attempting to follow, so that the widgets available may not be suited to the
tasks at hand. What is needed, then, is a still higher-level toolkit which is
tailored to the specific task of providing a GUI, and which enables the
programmer to provide the features the user expects in a consistent fashion.
These higher level objects are known as application frameworks.

Application frameworks have been used successfully on Macintosh and
Windows systems, which is why there is such similarity between applications in
each of those environments. Until recently, application frameworks have not
been common in Unix environments, but that is beginning to change.

Silicon Graphics provides an application framework called the IRIS ViewKit (TM)
with their workstations. The ViewKit is not intended to be a stand-alone library,
but instead is meant to be used in combination with the Motif library. This gives
software developers the ease, power, and consistency of the higher level
objects, but allows them the full low-level flexibilty of the Motif widgets should
they need it. This approach helps avoid the main danger of application
frameworks—that the desired behaviour of the application has to be
compromised in order to work within the framework.

As workstation vendors provide these application frameworks, the gap
between the Unix environments and the personal computer environments
should begin to narrow. Again, there is a danger that Linux will become the
poor relation of the Unix world.

The Hungry Programmers are also busy attempting to ameliorate this problem
by developing a free application framework which can be used on Linux. Called
the Hungry ViewKit, it is a C++ class library for developing Motif applications
which follows the API of the IRIS ViewKit. It is intended to be a superset of the
Silicon Graphics kit, so that all code developed for the IRIS version will work will
the Hungry kit, but not necessarily vice versa.

The LessTif project is in fact a spin-off from the development of the Hungry
ViewKit. While working on the Hungry ViewKit and XWord (a word processor
being developed for the X window system) the Hungry Programmers felt that
there was too much reliance on the Motif widget set, and decided that they
should implement a look- and feel-alike.

At the moment, there is no documentation available for the Hungry ViewKit, but
the XWord source is available as an example of its use. Work on XWord has
been given a higher priority than fixing bugs on the ViewKit. Thus, while a
release of the Hungry ViewKit is available, it is not yet for the faint-hearted.

[Author's Note: As is the nature of the Web, the URLs I gave in the original
article have changed. I believe the revised URLs below are correct.]

The Hungry Programmers have a home page, at http://www.hungry.com:8000/
or can be emailed as hungry@uidaho.edu. The LessTif home page is at http://
www.hungry.com:8000/products/lesstif/ and you can subscribe to the LessTif
mailing list by e-mailing majordomo@hungry.com with the request subscribe

lesstif in the body of the message. Alternatively, the request subscribe lesstif-

digest to the same address gets you the list in digest form. There is also a
LessTif documentation project at the URL http://www.hungry.com:8000/
products/lesstif/Lessdox/ The Hungry ViewKit home page is at
www.hungry.com:8000/products/viewkit

Malcolm Murphy still wishes that he had discovered jazz before he gave up
clarinet lessons at an early age. He considers himself too old (or too lazy) to
start again now, so he plays the guitar instead. If you have an uncontrollable
urge to send him some e-mail, his address is Malcolm.Murphy@bristol.ac.uk.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.hungry.com:8000
mailto:hungry@uidaho.edu
http://www.hungry.com:8000/products/lesstif
http://www.hungry.com:8000/products/lesstif
mailto:majordomo@hungry.com
http://www.hungry.com:8000/products/lesstif/Lessdox
http://www.hungry.com:8000/products/lesstif/Lessdox
http://www.hungry.com:8000/products/viewkit
mailto:Malcolm.Murphy@bristol.ac.uk
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/toc019.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Getting the Most Out of X Resources

Preston Brown

Issue #19, November 1995

Always wanted to change the look of X Windows? Here are the tools to do it
easily.

Do you ever wonder how some peoples' xclocks and xterms always start up
with different colors than boring old black and white? Do you wish those
Athena 3-D widgets (discussed in Linux Journal, issue 15) looked a bit more like
the Motif ones they are supposed to emulate? Through the magic of something
called X Resources, you can make all this happen—and a lot more.

Resources may look confusing and complex at first glance, like something only
a programmer with a mean streak would foist upon the unwitting user. It's true
that resources are very closely tied to X programming, which is why they can
appear so arcane. However, with a little practice, you can customize
applications to suit your own personal preferences, and kiss “vanilla X” goodbye
forever.

What are X Resources Useful For?

Color has already been mentioned, but to dismiss resources as a simple color
control mechanism would be a mistake. Don't like an application's choice of
fonts? Change them. Want to change the way the cursor appears? You can do
that too.

Resources can even be used to modify the entire behaviour of an application,
from the appearance and labels of buttons and pull-down menus, to the actual
functions that these items call in the program. For instance, if you think that the
“Quit” label on a button is too bland, you can easily substitute “Kill”, or
something even more imaginative.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Resource Files

X Resources are stored in several locations. Applications often have a default
set of resources that are stored in a file in the /usr/lib/X11/app-defaults
directory. For example, you will find resource files for both xterm and xload in
that directory. Notice the files usually have the first two letters capitalized, i.e.
XTerm, and XLoad. While this is only a de-facto standard, it is related to the
applications class name, which we'll get to later.

Besides these application-specific files, there are two other files in which you
can store resources. If you have a file in your home directory called .Xdefaults,
it will be loaded when your X session starts (either through xdm or startx),
replacing any system-wide resources that might have been defined (stored in /
usr/lib/X11/Xdefaults). A second file, .Xresources, doesn't replace the system
defaults but instead is merged with them. For that reason, you probably want
to use this file for your own resources instead of .Xdefaults.

Specifying a Resource

Resources are specified in one of the following formats:

name*variable: valuename.variable.variable: value

Resources are case sensitive, and you should be sure that there is at least a
space or a tab after the colon, before the value specified. The first format listed,
which utilizes the * separator (called loose binding), is used to indicate that all
resources of a program with name name and variable variable are to
acquire value value. For instance, the resource

Xedit*font: 7x14

will cause xedit to use a 7x14 fixed font for everything, including the main
window and the menus. (We will see how to find resource names later in the
article—take them on faith for now.) But what if you only want to change the
font in a particular area of a program? In that case, the . notation (called tight
binding) would be used. This notation allows you to be more specific than loose
binding allows:

Xedit.Paned.Label.font: fixed

will make two labels in xedit use the fixed font. However, the default font (7x14,
as set by the first resource) will be used everywhere else. Note that although
the first resource applies to every font resource in the Xedit program, including
those two labels, the second resource is the one used for those labels because
it is more specific. More specific resources are always used in preference to less
specific resources.

Resources, and the widgets they modify, have a hierarchical nature. “What's a
widget?” you ask. Widgets are the basic building blocks, or objects, of X
programs. Some example widgets with which everyone is familiar: scrollbars,
text-entry fields, buttons, and checkboxes. In the above resource, the Label
widget is a “child” of the Paned widget, which is a “child” of Xedit. This will
become more clear when the editres program is introduced below.

One other note before we continue: a distinction must be made between
classes and instances of a particular class. In the above resource, Label

specifies any instance of the widget class Label. There are two that match the
specification, whose names are bc_label and labelWindow. All classes begin
with a capital letter by definition; Label is the class, and bc_label and
labelWindow, which start with lower case letters, are the instances of that class.

You can specify instances as well as classes, so that only one particular widget
is affected; you can add the following resource:

Xedit.paned.bc_label.font: 7x14

which will set the font for one of the two Label widgets back to 7x14—it is more
specific than the previous resource.

It is usually more convenient to set the resources for an entire class of widgets
than for an individual instance, as you typically want to make the entire
application look consistent.

Viewing, Changing, and Loading Resources

Several times, you've been told to add or modify a resource. How is this
accomplished? The X distribution provides several programs you can use to
add, modify, and view resources. The most simple method (but perhaps the
most difficult) is to specify the resource for a program as an argument when
the program is started. Most well-behaved X programs accept the xrm

command line option for adding or modifying a single resource. The format
works like this:

-xrm "resource"

Specifying resources on the command line can become tedious, to say the
least. X provides considerably more sophisticated mechanisms to modify and
examine resources. The most simple of these is xrdb. Xrdb is a command line

utility that can load, query, and merge resources. Here are some of the
common command line options:

• -load filename Load the resources contained in filename into the
resource database. Replaces any resources currently in the database with
new values if they are specified in the file.

• -merge filename Performs much like the load option, but only loads
those resources which are not already modified. Nothing currently in the
resource database that is encountered in the file will be loaded.

• -query Show the resource database that is currently in use. Only those
resources that have been modified are displayed. If all resources were
displayed (including defaults), then you would probably have much more
information than you expected.

Another very useful program that comes with the X distribution is editres.
Editres can be used to interactively modify the resources of a particular
program. After starting editres, pull down the “Commands” menu, select “Get
Widget Tree”, and then click on the application you want to examine or modify.
Now you should see something like what is pictured in Figure 1 (the actual
hierarchy pictured is for xedit). Note that it won't look exactly like Figure 1,
because I've modified my resources for editres.

Figure 1. editres, an interactive X resource editor

All widgets are laid out in a tree-like fashion, with the parent widgets on the left,
and their children progressing to the right. Lines connect children to parents.
You can use the box in the upper-left corner of editres to move the display
around if the widget tree is larger than the window itself.

Using the “Tree” menu, you can switch between class and instance names and
select certain widgets in particular. If you want to modify the resources of one
particular widget, select it by clicking on it once with the left mouse button, and
then, from the “Commands” menu, choose “Show Resource Box”. A popup box
with all the available resources for the widget selected will be displayed, as
shown in Figure 2. In the Resource Box, select a resource with the mouse, and
then enter a value for the resource in the text field below. This is perhaps the
easiest way to both find the names of the resources and experiment with
setting them to different values.

Figure 2. Ascreen from editres showing the resource display screen

You can also make the resource string more loosely or tightly bound by
adjusting which fields are highlighted at the top of the popup window. When
you are ready to see the results of your changes, push the “Apply” button at the
bottom of the window.

More detailed help with editres can be found on the editres manual page.

Some Examples

No article on X resources would be complete without detailed examples of how
they can be used. To do this, we'll take a look at one simple X client—xclock—
and then at a whole widget set—the Athena widgets (which are a stock part of
any X11 distribution).

Let's try a couple of things with xclock. You can either make these changes with
editres, so you can view them interactively, or you can add them to your
.Xresources file, which you'll need to merge with xrdb. Remember, whenever
you make changes to the resource database, the clients affected need to be
restarted in order for the changes to take effect. If you think the normal black
and white scheme of the clock is too dull, consider the following:

*xclock.foreground: steelblue*xclock.hands: steelblue
*xclock.background: ivory

That should give you some ideas for starters. For a more extensive change in
appearance, try:

*xclock.analog: 0

This will make the clock display in a digital fashion. Specifying 1 as the value for
this resource will reset it to the normal analog display.

Let's go a step further. In the July, 1995 issue of Linux Journal, the Xaw3D

widgets were introduced. The purpose of these widgets is to give the default
Athena widgets a more three-dimensional look and feel. However, with no
default resources, programs still can look washed out and dull. This is because
no default colors have been specified for the widgets, so programs that don't
change these resources explicitly will display them in black and white with
unattractive, dithered shadowing. See Figure 3 for an example of this.

Figure 3. A “vanilla” xmailtool

A set of resources which make the Xaw3D widgets appear more like the
popular Motif widgets appear in Listing 1.

Listing 1

! Good Xaw3d Defaults*customization: -color
*shadowWidth: 3
*Form.background: gray75
*MenuButton.background: gray75
*SimpleMenu.background: gray70
*TransientShell*Dialog.background: gray70
*Command.background: gray75
*Label.background: gray75
*ScrollbarBackground: grey39
*Scrollbar*background: gray75
*Scrollbar*width: 15
*Scrollbar*height: 15
*Scrollbar*shadowWidth: 2
*Scrollbar*cursorName: top_left_arrow
*Scrollbar*pushThumb: false
*shapeStyle: Rectangle
*beNiceToColormap: False

*SmeBSB*shadowWidth: 3
*highlightThickness: 0
*topShadowContrast: 40
*bottomShadowContrast: 60
! fix up a few of the default X clients who
! now look silly
*xclock*shadowWidth: 0
*xload*shadowWidth: 0
*xcalc*shadowWidth: 0

The first resource tells all programs that color is available and should be used.
Then, the shadow width for all Athena widgets is set to 3 (which looks like
Motif). Default colors are then selected for most of the common widgets
(buttons, scrollbars, and the like), and shadow contrast levels are set. Finally,
shadows on a few X clients is a bit overkill, so shadowWidth is reduced to 0 for
these. Figure 4 shows how the program now looks more aesthetically pleasing
as a result of these modifications.

Figure 4. xmailtool after resource changes

This should get you started. X resources are one of the most important aspects
of X programs in general, so a basic understanding of them is essential—not
only for using and customizing X programs, but also writing them. You should
now be able to discover the resources hiding behind your own favorite
programs, and it would be good practice for you to apply the techniques in this
article to a different program of your own choosing right now. Remember this
while you are tinkering with X resources: X may not be as simple to configure as
MS Windows, but it is much more powerful.

Enjoy!

Preston Brown is a sophomore Computer Science student at Yale University in
New Haven, CT. He discovered Linux with the earliest TAMU release in late
1992. You can reach him by e-mail at preston.brown@yale.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:preston.brown@yale.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/toc019.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

How to Build a Mac

Andreas Schiffler

David Moody

Issue #19, November 1995

Have a Linux box and need to run Mac applications? Andreas and David show
you how it can be done.

If you have been browsing through Linux newsgroups, you may have heard
some talk about a new Macintosh emulator called Executor (pronounced ig-
zek'-yu-tor). When we (Andreas Schiffler, a long time Linux user, and David
Moody, a die-hard Mac fan) first heard about this program, our interest was
sparked: finally, some common ground on which to relate! We investigated and
wrote this review for Linux Journal to give readers some idea of whether this
commercial product will bridge the gap between these two completely unique
operating systems, and also to give the Mac-illiterate Linux user a head-start on
using the program.

Executor, a product of Abacus Research and Development, Inc. (ARDI), is “a
commercial emulator that allows non-Macintosh hardware to run some
applications originally written on a Macintosh”. Recently, a version for Linux has
become available. This review is based on a pre-beta version, 1.99o, which was
current at the time of evaluation. It should be noted that this pre-beta version
has many known bugs which ARDI is addressing for its official 2.0 release of
Executor.

Executor is available as a demo for evaluation purposes. The demo is a fully
functional version which is limited to 10 minutes of use, a limitation which can
be removed by obtaining a serial number and registration code, which you are
granted when you purchase it.

The demo can be obtained from various Linux FTP sites, including ftp://
sunsite.unc.edu/pub/Linux/system/Emulators/, or from the official (but slower)
ARDI FTP site at ftp.ardi.com. For installation, we obtained the 3 MB archive,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

unarchived it with tar xzf executor199o.tar.gz changed directories with cd

executorlinux199o and ran make as root. This copied the executable into /usr/
local/bin/executor and created a Macintosh “volume” in /usr/local/lib/executor/.
A quick look into its sub-directories reveals that Executor uses the native file
system with additional emulator-specific files (prefixed by a %); the file system
is seamlessly integrated into your Linux system. The current version is only
supported under X-windows, but an SVGALIB version for those without X is in
the works. Typing executor in an X-terminal brings your new Mac to life. (See
Figure 1.)

Figure 1. Startup Screen

The first thing David (the Mac expert) noticed is the slightly non-standard setup.
Instead of the “Finder” desktop (which Macs use to find and run programs on
the hard drive), Executor runs its own “Browser” program. The main difference
is the presence of a “hot band”, located just below the menu bar. This band
contains a help button, which gives help on using the hot band, and 6
application grouping buttons for making quick reference icons. Basically, the
Browser is a slightly watered-down version of the Finder; we found it fairly easy
to use, but lacking a bit in on-line documentation and color.

The Mac system is not completely emulated, so there are some features which
are handled differently in, or are absent from, Executor. For starters, the
keyboard is slightly different. Macs have two keys which are absent from the PC
keyboard, the option key and the

key, and the Mac has no Alt keys. Executor uses the left Alt key as the

key and the right Alt key as the option key. Since the

key is often used as an accelerator key, the documentation could have been a
bit more specific about this. In future releases, a README.FIRST summarizing
these topics, for people who don't want to read the fairly extensive FAQ before
running executor, might be a useful addition.

Floppy disks are also handled differently from a real Mac, and some insight in
Executor floppy disk handling is required to avoid hangups. On a Mac, inserting
a disk immediately causes an icon to appear on the desktop; in Executor, you
have to press

-shift-2 once the disk is in the drive and choose Eject before a disk is taken out.

https://secure2.linuxjournal.com/ljarchive/LJ/019/1031f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/019/1031f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/019/1031f1.jpg

This is how disk swapping encountered during the installation of program is
handled as well. This is very important to note, as clicking the “OK” button
during a disk swap before pressing

-shift-2 will result in a segmentation fault, and it's “game over” for Executor.
Note, however, that this is explicitly an experimental release of Executor, and
faults that we encountered may well be corrected in version 2.0, which will
probably be released by the time you read this. As mentioned in the FAQ,
Executor cannot read 800K Mac disks, because PC floppy drives are physically
incapable of doing so. The current version hangs for a long time when a 800K
disk is inserted and the disk-check option is selected. This is annoying but
should be no problem for most people—if you are aware of it.

Executor has only a little System 7.x support, which is the current incarnation of
the Mac operating system. This will only affect programs which use the special
features of System 7.x. Also, Executor won't load CDEV's (Macintosh control
panels) or INIT's (modular extensions to the system)---that means no
QuickTime, After Dark, etc.

Now we decided to get down to work and install WordPerfect 3.0. Programs like
WordPerfect have a particular use for Executor/Linux users who want to use
commercial productivity applications that are not yet available under Linux or
who simply want to make use of their old documents without having to switch
operating systems. The WordPerfect installation requires knowing how to
handle floppies under Executor, as mentioned above, but completes speedily
and without problems. A new folder is created, and a double click starts
WordPerfect.

Figure 2. Wordperfect Screen

Now that was easy! In Figure 2, you can see the demo document with inline
graphics and tables. According to the Readme file, Executor can send output to
a PostScript-compatible filter, so we printed our document. As promised, out
came our formatted document. (Our printer prints PostScript by default). So
far, so good. Now the bad news. Although the basic editing and formatting
appeared to work well, we were unable to get the graphic editor or the
equation editor to work.

PageMaker 4.2 installation was straightforward, and we had our program up
and running in a few minutes. Everything appeared to be where it should be,
and all documents were displayed correctly. The functions we tried worked
well, although PageMaker is mentioned in the Executor 1.99o bug list as having
trouble with some file functions.

https://secure2.linuxjournal.com/ljarchive/LJ/019/1031f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/019/1031f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/019/1031f2.jpg

Enough real work—what did we buy a computer for anyway? On to the games.

We started with the included shareware games. Lemmings was our first choice.
It worked, but it seemed quite sluggish. This is because of the way Executor
handles graphics. There are two methods to choose from for color mapping:
either the standard color map allocation under X-windows (dynamic) or a
private color map controlled by Executor. The first option preserves the colors
of the X-windows desktop, but is slow. The second option, invoked with the
command line executor -privatecmap, creates some bizarre colors for the rest
of X-windows, but is very fast. When we re-ran Executor with the -privatecmap

option, Lemmings blazed.

We ran the other two included games, Solitaire and Risk, without incident. On
to the private stock. The FAQ sheet claimed that Wolfenstein 3D worked under
Executor, so we loaded it up. Technically, it did work. However, even with the
fast color option, it was unbearably slow. Perhaps we were pushing the limit a
bit—or did we have to fiddle with more preferences? We tried installing
Populous, but no amount of prodding would get it working.

Figure 3. Prince of Persia

We had more luck with Prince of Persia (Figure 3). It ran right off the floppy disk
—and was it ever fast! Our jaws dropped as we watched the emulated game
outspeed the version running on our Mac. Needless to say, we were very
impressed. At this point, however, it would be worth discussing the kind of
machines we were using and doing some real benchmark comparisons.

ARDI includes Speedometer (Ver. 3.23) with its emulator. Speedometer
performs a variety of CPU, graphics and other benchmark tests, thus providing
a convenient means of comparing machines, so we used this program to
perform our tests. Our main test systems were a 25 Mz, 68030LC-based LCIII
Macintosh and an AMD 486 DX4-100. ARDI claims that Executor runs at 1/3 the
speed of a similar-speed Macintosh, so these systems should be roughly
comparable in speed.

For our final software test, we decided to stack our emulators. With some
trepidation, we booted up Executor, and loaded a program called SoftAT which
is—you guessed it—a DOS emulator for Macintosh. Did it work? You bet. We
even managed to mount an E: drive under SoftAT to the directory /dos, which
was a DOS partition mounted under Linux, provided by Executor. Got your
head around that? The short version is, it was really cool. Take a look at
MSD.EXE running under SoftAT (see Figure 4).

Figure 4. MSD

https://secure2.linuxjournal.com/ljarchive/LJ/019/1031f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/019/1031f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/019/1031f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/019/1031f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/019/1031f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/019/1031f4.jpg

According to the FAQ and WWW site, the following programs have been tested
and work properly under Executor: Entertainment: Beam Wars, Glypha III,
Shatterball, Civilization, Spaceward Ho! Productivity: Claris Works 2.0.1,
Microsoft Word, Microsoft Excel Utility: DropStuff Enhancer, Stuffit Expander,
NIH Image, AddressBook We are sure there are numerous other programs that
will run.

So what's the bottom line? If there is even a remote chance that you will ever
want to run a Mac program on your Linux box, you should definitely get
yourself a copy of the Executor demo. That way, you can try out any programs
you have to see if they work. At the very least, you'll impress anyone looking
over your shoulder!

Although we were very impressed with the experimental version 1.99x, we
recommend saving your work regularly, because of the slightly unstable nature
of these pre-beta releases. ARDI promises that Version 2.0, due out in October,
1995, will fix many bugs, making Executor into a very attractive product.
Missing from 2.0 will be AppleTalk, sound, serial port access, and support for
INITs and CDEVs.

After version 2.0 has been released, ARDI will begin working on System 7.5
support, sound and serial port access, and better documentation—much
needed additions. Current licensing fees are $49 for educational use, $99 for
commercial use, both of which include updates up to version 2.0---which we
find very reasonable.

Get the Executor demo, but be sure to read the accompanying documentation
in the form of a FAQ. Take a look at the unofficial WWW pages at
vorlon.mit.edu/arditop.html for more information and tips, and look around
the Internet at Macintosh shareware sites, including ftp://wuarchive.wustl.edu/
systems/mac/info-mac/.

Happy Mac-ing!

Disclaimer: We are in no way related to ARDI.

http://vorlon.mit.edu/arditop.html

Andreas Schiffler is a graduate student at the
University of Saskatchewan and has been a full-time
Linux'er since kernel version 1.0.9. He is the co-
founder of the Saskatoon Linux Group, is working on a
version of the DOS classic “Scorched Earth” for Linux,
and has recently developed a taste for Macintosh
software. He can be reached at
andreas@karlsberg.usask.ca

David Moody is also a graduate student at the
University of Saskatchewan, but spends much of his
time developing software through his company,
Palindrome computing. David enjoys music and rabbit
breeding.

Contact and Pricing Infomation

Andreas Schiffler (andreas@karlsberg.usask.ca) is a graduate student at the
University of Saskatchewan and has been a full-time Linux'er since kernel
version 1.0.9. He is the co-founder of the Saskatoon Linux Group, is working on
a version of the DOS classic “Scorched Earth” for Linux, and has recently
developed a taste for Macintosh software.

mailto:andreas@karlsberg.usask.ca
https://secure2.linuxjournal.com/ljarchive/LJ/019/1031t2.jpg
mailto:andreas@karlsberg.usask.ca

David Moody is also a graduate student at the University of Saskatchewan, but
spends much of his time developing software through his company,
Palindrome computing. David enjoys music and rabbit breeding.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/toc019.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Best Without X

Alessandro Rubini

Issue #19, November 1995

Small computers, especially those with little memory, don't run the X Window
System—or any other graphic environment—very smoothly. An intelligent
keyboard configuration and use of the gpm mouse server will help you exploit
your small Linux box to its fullest.

If your system doesn't run X-Windows, you may miss the mouse support that
makes interactive programs so easy to use. gpm, the general purpose mouse
server, is designed with you in mind. Instead of having a multitude of mouse
drivers, several from each mouse vendor, some that work well, others that
don't, you can run gpm, which can talk to all mice, and works quite well. This
article explains how to set up gpm to work with your mouse and programs, and
also explains how to set up your text console to work the best for you.

The gpm program is derived from the older selection program, which was
solely for cut-and-paste on the Linux console. gpm acts like selection until a
client requests mouse events. Because gpm manages each console as an
independent entity, you can use your multi-console text screen like a multi-
window graphic environment. This article refers to gpm-1.0.

Configuring the Mouse Device

One major problem with Linux is hardware compatibility, and the mouse is no
exception. Companies are always releasing new mice, and each of them
provides a different mouse driver for DOS. Linux users are left alone with their
device and no driver. Fortunately, companies tend to converge on a few
“standard” protocols, which are supported by both XFree86 and gpm.
Moreover, the gpm package includes gpm-test, which can help in detecting
your own mouse port and protocol, and which suggests which command-line
options you should use to invoke the daemon.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

You must provide the protocol name and options to gpm on the command line,
together with your own preferences. These will affect all mouse response until
the server dies. One preference allows button reordering: left-handed people
can reorder the buttons by using the command line option -B 321, and owners
of two-button devices can use -B 132 to use the right button as if it were the
middle one, a useful way to paste the cut-buffer in Emacs without modifying
Emacs itself. The current version of the gpm server duplicates the functionality
of both mconv2 and MultiMouse, and can act as a “repeater”. You can merge
the events from two different devices and pass them along to the X server. This
is useful if you use a laptop with both an internal pointer and an external
mouse. If you'd like to use one mouse in each hand but keep the internal
trackball active, however, gpm can't help you—no more than two mouse
devices can be read at a time.

The “repeater” option is automatically enabled if you read two mice, but can be
triggered independently; if you use gpm as a repeater, the X server can be
configured to read /dev/gpmdata, a fifo named pipe, where gpm puts mouse
packets received while the console is in graphic mode. This option is meant to
be used by owners of busmice who want to multiplex text-only and X operation
without killing and restarting the daemon. Owners of new dual-mode mice,
which run the three-button protocol only if the middle button is kept down at
mouse initialization, will enjoy it as well, because the device is initialized only at
boot time.

How Does gpm Work?

The core of the gpm daemon is currently built around the select()system call
and the process runs in the user space of the systems memory. The main loop
of the daemon listens to a Unix-domain socket and to the mouse, and uses
them in conjunction to multiplex event retrieval and management of new
clients. The main loop of gpm can be (and has been) used to build a concurrent
daemon for network services by modifying just a few details.

The choice of a user-space server for the mouse was originally meant to help
owners of low-end boxes—the process could be swapped out when not in use
and thus save a little precious memory. Unfortunately, when you use Emacs, a
perceptible delay in delivery of mouse events can severely degrade
performance, and combined use of mouse and keyboard is completely
unreasonable on a slightly loaded machine.

The swap-in delay can be removed by locking the process in memory, but in the
case of Emacs two processes should be locked in memory. The goal for
gpm-2.0, which will supersede the current version, is to provide the choice
between a user process and a kernel module. The advantage of running a
kernel module is mainly fewer context-switches (and no swap-in delay

whatsoever), while the main disadvantage is the waste of memory. The module
alternative will offer the same interface to client applications, but will use a
device node instead of a socket.

Configuring the Keyboard

The Linux keyboard is fully customizable (could you doubt it?) and can be
tailored for smart text-only usage. The idea is to reduce context-switch time to
get more performance out of your multitasking brain. This is the basic idea
behind virtual consoles.

Here are some suggestions for improving your keyboard. I will describe some
of the useful changes to make, and then give the appropriate lines for the
loadkeys program to effect the change.

• Caps_Lock: Why have a “Caps Lock” key near the “a” key? When caps lock
was useful to write silly BASIC programs they put it far from alphabetic
keys; now that it is not so useful, they turned it to a trap for your little
finger. Just get rid of it and turn it into a Control key.

alt-CapsLock will still yield CapsLock
keycode 58 = Control
control keycode 58 = Control

• Control: The Control key on the bottom-left corner is a duplicate of the
one we put by the “a”. You can turn it into Last_Console and thus have a
fast editor/compiler context switch. Moreover, this makes your wrist
useful in typing. Last_Console switches to the previous console you
visited, and is one of the several exotic capabilities of the Linux keyboard.

keycode 29 = Last_Console

• The Numeric Keypad Unless you're used to desktop calculators, the
numeric keypad is too far in the right to be useful in typing digits, and can
be turned to a console-switch scratchpad: hitting Alt-F8 takes a whole
hand, and Alt-F1 isn't easy, either, at least on keyboards with the function
keys at the top. Similarly, X-Windows users can configure the keypad as a
map to their virtual desktop, provided that the Num_Lock key is left alone:
xmodmap can't differentiate a non-Num_Locked keypad from the arrow
keys. The “0” key then is suitable to be another Last_Console, useful if you
didn't get rid of Caps_Lock.

keycode 29 = Last_Console # KP_0
keycode 79 = Console_1 # KP_1
keycode 80 = Console_2 # KP_2
keycode 81 = Console_3 # KP_3
keycode 75 = Console_4 # KP_4
keycode 76 = Console_5 # KP_5
keycode 77 = Console_6 # KP_6
keycode 71 = Console_7 # KP_7
keycode 72 = Console_8 # KP_8
keycode 73 = Console_9 # KP_9
keycode 98 = Console_10 # KP_Divide
keycode 55 = Console_11 # KP_Multiply
keycode 96 = Console_12 # KP_Enter

keycode 78 = Console_13 # KP_Add
keycode 74 = Console_14 # KP_Subtract

• Home and End It can be useful to configure Home as Control -a and End

as Control-e. This works with bash, tcsh and Emacs, without any other
fiddling.

keycode 102 = Control_a
keycode 107 = Control_e

• Escape: If you are used to Sparc2s, old PCs, or the old faithful Apple II
you'll enjoy putting the Esc key near the “1”. This change forces you to
reposition the backtick/tilde pair as well. The exact change made here
may not work on your keyboard, you'd better check your keycodes with
showkeys.

keycode 41 = Escape # Escape
alt keycode 1 = Meta_Escape
recycle grave/asciitilde near the Enter key
keycode 43 = grave # asciitilde
control keycode 41 = nul
alt keycode 41 = Meta_grave

• Backslash: The backslash/bar pair should be near “Z”, where the default
keyboard configuration puts a duplicate of less/greater.

keycode 86 = backslash bar
control keycode 43 = Control_backslash
alt keycode 43 = Meta_backslash

The modifications listed above work with my keyboard. Check your actual
keycodes using showkeys before applying these changes. showkeys is part of
the kbd package. If you're a real typist, you can make something really useful
out of the twelve function keys. Read the keytables(5) man page to probe
further. For more information on how to modify the keyboard, see Kernel
Korner in Linux Journal #14.

Spawning New Consoles

“Why should I use the numeric keypad to switch between 15 consoles when I
only have 6?” I hear you say. Linux can handle a s many as 63 virtual console,
and 6 (or whatever else) is only the number of “login prompts” configured in
your system. Actually, consoles are dynamically created and destroyed during
your system's lifetime.

The different login: prompts are spawned by the init process, which knows
what to do by reading the file /etc/inittab; this very file specifies where getty

should be invoked. You can play with inittab even if you don't completely
understand it: to open more (or fewer) than 6 consoles for login, you can simply
duplicate (or remove) lines. You must be careful, however, about the first field
in the line—it is a unique “key” for the line, and it must be exactly two letters
long.

My choice for console login sessions above 9 is cA, cB and so on, with the first
nine entries c1 through c9.

A more interesting, and memory-saving, approach to your Linux session is to
spawn only one or two gettys using /etc/inittab, and dynamically allocate other
as you need them. There are a number of ways to spawn a new console:

• gpm-root: This tool can spawn a new getty on the lowest-numbered free
console in your system: just press control-mouse to wake the program,
then press the mouse button again on the correct menu entry, and you
will soon be presented with a newly-created login: prompt—it's that easy.
When you log out from that console, everything is cleaned up
automatically. This way of spawning consoles has the advantage that the /
etc/utmp file is kept up to date, and thus the who command tells you the
truth.

• open: The tiny open utility spawns a new console and executes a program
in it. You can use loadkeys to create a hot key which invokes open. Thus a
single keypress (or meta-key) can log you in. This approach doesn't update
the utmp database and works only when the hotkey is fed to a shell
prompt.

• spawn_console: The daemon spawn_console is part of the kbd package. It
creates a console in response to a signal sent by the kernel in response to
a Spawn_Console keysym. This approach works even if there isn't a shell
to get your key, and doesn't update the utmp database.

What's the Difference?

The first proposed approach requires no intervention on your side—you should
invoke the gpm server and the gpm-root client only at bootup, which you're
already supposed to do. The gpm-root client then takes care of it all. Actually, a
console is created only by opening it, so little more than fork() and exec() is
required. Cleaning up is performed when the child process dies.

The other approaches are explained in the documentation for kbd-0.90, and
are slightly more difficult only in that you need to change your keyboard
configuration again, run an extra daemon program, or retrieve an extra
package—open isn't part of the kbd package. The extra effort is small, because
all of the hard work is implemented in the kernel.

Changing the Text Mode

Older versions of Linux couldn't allow console resizing, and a single video mode
should be used for the console from boot to shutdown, and it usually was the
bare 80x25. Linux-95 (Linux-1.2) allows console resizing. The user program

SVGATextMode, despite its cumbersome name, is a nice utility to change the
appearance of your text console on-the-fly.

The tool makes use of the ioctl(VT_RESIZE) system call to change the way the
video buffer is managed in the kernel, and modifies the internal registers in
your video board in order to send the right signals to your monitor. The
program must run with root permissions because both tasks are privileged.
SVGATextMode isn't alone in the field of console resizing, but it currently is the
most flexible choice.

Installing the program is easy—just make && make install. Then configure the
file /etc/TextConfig—you need to tell SVGATextMode which chipset is in your
video board. The TextConfig file is full of helpful comments.

The single tricky task is resequencing running applications to the new tty size.
The configuration file provides a ResetProg line, where you can put a pathname
of an executable file that will handle this; it will generally consist of sending
SIGWINCH to applications, as outlined in the sample ResetProg.

The definitions for the specific modes are modeled on the XF86Config lines. The
X-Windows configuration documentation and any previous experience with
with X-Windows configuration can help in playing with text modes. If you're
going to fine-tune your X-Windows screen, you can easily run your tests with
SVGATextMode. Its fast cycle time makes trial-and-error better because you
needn't restart the X server for each trial. Fine-tuning screen timings for text
modes can lead to a good configuration to be pasted in your XF86Config file.
Alternately, if you have set up X-Windows already, you can use that knowledge
to set up SVGATextMode.

Other facilities offered by SVGATextMode are automatic font loading and
cursor reshaping. This last feature alone is a good reason to run
SVGATextMode on your laptop—no more kernel patch to have a block cursor.

Problems Related to Console Resizing

If you use SVGATextMode, especially on small machines, you'll notice that
sometimes console resizing will fail, even if you have plenty of swap available,
and sometimes even with plenty of RAM. The problem is related to the kind of
memory needed; the kernel needs to complete the system call (an ioctl())
atomically, and it needs to get a contiguous chunk of memory for each active
console. There's no time to swap out some process or to shrink the buffer
cache, and the kernel keeps only 1/64 of the available RAM for these “urgent”
issues. As a result, the smaller the box, the more consoles you use, the more
you're prone to fail resizing. Resizing to a smaller estate won't always help,
because the kernel must be sure to have place for all the active consoles before

it starts copying video data to the new area, and only at the end can the old
buffer be released. If it fails, simply try again; it will probably succeed the
second time.

Another issue is the role of the ResetProg. Why do some applications do resize
well (like jed), others become completely stuck (like selection) and still others
need to be sent the SIGWINCH signal? Because a resizing of the surrounding
window is an asynchronous event, which doesn't fit the normal environment of
the application.

Applications belong to three types: over-attentive ones look at the window size
often, and perceive the new situation right when it happens; more conventional
applications wait for an asynchronous notification of the event (a signal, namely
SIGWINCH, for WINdow CHange), and respond to the notification in the right
way; and some applications simply don't respond to changes in window size,
and ignore SIGWINCH---the current version of selection was written before
console resizing was available. Thus, while a resizing xterm sends SIGWINCH by
itself, a resizing console doesn't send anything, and an external ResetProg is
needed to fill the gap.

Tools for the Text Console

The following tools work particularly well on the text console, sometimes even
better than in graphics mode.

• gpm-root: gpm-root is a root-window manager. Its role is to draw menus
on the screen background, like you do in the X environment. By default it
responds to control-mouse events, since mouse-only is left to the
selection mechanism, a vital feature if you work on a text console. The
menus drawn by gpm-root are read from a user-local configuration file,
and can be tailored to your own preferences. gpm-root allows console-
switching, console locking, opening a new console to create a new system
login, retrieving system information and executing external commands, as
well as recursive menus. The user configuration file is reparsed when
needed, to ease trial-and-error menu writing.

• Emacs The Emacs editor is made mouse-sensitive by loading the t-
mouse.el package, which comes in the gpm distribution. All the
functionality available under the X Window System is duplicated on the
text console, including the scrollbar. The scrollbar acts on the last column
of the screen and smooth scroll is accomplished through a variable
resolution widget—the more you move your mouse to the left, the less
scrolling takes place in response to vertical motions. A meta- mouse
button press triggers the scrollbar independently of the position of the
mouse.

• Jed: The Jed editor is mouse-sensitive as well. Mouse support has been
developed by Jed's author, and thus is perfectly integrated. Jed is a good
alternative to Emacs if you own a small computer—it is considerably
smaller, both in disk usage and memory occupation, but offers the same
basic commands and interface, as well as its own extension language.
Well, if you learned “elisp” to configure Emacs, won't you learn “slang” to
configure Jed?

• dialog: The dialog program is nothing special, except that it runs definitely
better on the text console than under an xterm. Managing a Slackware
installation with the dialog menus on the console is a breeze, especially if
you can interact with your mouse. Under xterm, on the contrary, a dialog
menu looks ugly, and available mouse events are limited to button press,
so you're almost forced to use the keyboard. Moreover, the curses
libraries tend to use the alternate screen provided by xterm, and thus
message boxes are simply invisible, and you wonder why the terminal is
idling around without any message on it.

• mc: mc (The Midnite Commander) a powerful file manager, is modeled on
the famous DOS command nc, though much more powerful than the
original. mc is fully configurable and extendable, and does a good job of
managing your file system status. You can use its menus with the mouse
as well as the keyboard, while shift-mouse runs selection as usual.

• screen: The screen utility is a viable alternative to opening a lot of
consoles. It manages up to ten terminal sessions running on a single
physical connection. screen offers a lot of functionality, and is a must if
you use a vt100 or an old PC running kermit to connect to your linux box.
It is useful also if you're really console-hungry and you don't have enough
consoles. The major drawback of screen is that it emulates a vt100, so you
lose all the extra features offered by the Linux console. Specifically, you
can't run gpm-aware programs under screen. One really nice feature of
screen is the visual-bell facility. It offers a cut-and-paste facility, too, but
mouse-based selection is easier to use.

• minicom: minicom is an easy-to-use communication package resembling
DOS's telix with a menu-oriented setup. It offers a good scripting utility,
which makes your programs talk directly with the remote end of your
serial connections. I use minicom to remotely control a Nicolet
oscilloscope, with no concern about communication parameters.

• gnuplot: Its name says a lot about it. A drawing program that can read
external ASCII files, its major advantage is the ability to manage a many
different output devices—including a bare terminal. This means you can
look at your data graphs without starting X-Windows. The granularity of a
tty plot is coarse, but gnuplot does its job well. It has a fairly complete
internal help facility, and you can produce nice PostScript (or other
graphic format) graphs without entering your graphic environment.

Further Readings

All the tools described above come with manual pages or info files. mc has a
good internal help utility. gpm-root and the lisp library t-mouse.el are part of
the gpm package.

Text-Only Resources

Alessandro Rubini is taking his PhD course in computer science and is breeding
two small Linux boxes at home. Wild by his very nature, he loves trekking,
canoeing and riding his bike. He wrote gpm, and can be reached as
rubini@ipvvis.unipv.it.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/019/1090s1.html
mailto:rubini@ipvvis.unipv.it
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/toc019.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux on Low-End Hardware

Trenton B. Tuggle

Issue #19, November 1995

Trappen is a low-powered Linux box on the Internet. It serves uucp e-mail and
news feeds to two home Linux machines. It also provides anonymous ftp and
telnet terminal capabilities. This is its story.

I work in a research lab with many Unix boxes. My problem is that these boxes
are dedicated to research almost all the time. Our system administrator doesn't
really have time to support people like me, who want more than the traditional
dial-in e-mail reading. Sure, term is quite useful, but I'm a traditionalist.

You see, I run Linux at home. I have the full power of a Unix machine in my
house, and I am not going to be satisfied by using it as a terminal to dial into a
server with it. I want my own e-mail!

In the old days of Unix, before Internet, machines transferred e-mail, news, and
files flawlessly [Well, pretty well, anyway—Ed] by calling each other up over
phone lines. A machine could have dozens of modems and would accept calls
and periodically call up other machines using the system called uucp—Unix-to-
Unix copy. Instead of getting files through anonymous ftp, people used “public
uucp”. Instead of writing some nightmarish scripts to call in, transfer files, hang
up, and process them, I thought—why not use uucp?

So I began looking for a machine to use. About that time, a friend of mine was
hired, and we found an old computer in his office. It was an old 16 MHz 386SX.
In its previous life, it ran Procomm and was a full-time terminal. What a change
we had in mind—we transformed it into a multi-tasking Unix server! It had 4MB
of RAM, which was enough to run Linux. But the hard disk wasn't much to gawk
at—40MB. We named it “trappen”.

The purpose of trappen was two-fold. First, we wanted uucp connectivity to our
home Linux boxes. Second, we wanted to provide anonymous ftp and http for

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

ourselves; not that we badly needed it (though it would be handy) but more
because it's fun to have your own personal Unix server.

We decided to split the disk in half—20MB for the system and swap space, and
20MB for file storage. Now, it needed about 5MB of swap space, so how was I
supposed to squeeze a Linux system into 15MB and still have plenty of room
for news, e-mail, and ftp-able files?

I've installed many Linux systems over the years, but I always simple used
Ethernet to copy my setup onto the target computer. (I have almost created my
own distribution.) But my system would take me days to prune down to 15MB. I
had to resort to using someone else's distribution, instead.

In the beginning, Linux distributions were not really very fancy. They gave you
the files, and you were on your own. If you weren't a Unix expert, you could get
stuck in a swamp of daemons, config files, and strange programs. But I knew
installations were getting better, so I decided it was worth a try.

I grabbed the latest Slackware distribution and looked at the disk contents; I
could do it. I didn't need any programming libraries, and I didn't need X-
Windows or anything fancy. Just the basics. About 20 minutes later, I had the
tiniest Unix system I've ever seen! I went ahead and installed everything I
needed, and it took 14MB! I had all the binaries I needed: news-readers, mail-
readers, and uucp. The next step was to configure everything.

Now I expected to have a lot of things to configure. We had smail, anonymous
ftp, and the rest, but the Slackware system did such a good job of setting up
default configuration files that most things worked out of the box. What I did
spend time on was smail and uucp. I set up uucp to route things to our two
Linux boxes at home, and configured smail to use it. Then we went through and
stripped out any functionality we didn't need, to make the system even smaller.

To support us, our network administrator here at the lab agreed to put in DNS
MX records for our home computers, pointing to trappen. This would allow e-
mail addressed to us at our home machines to be sent to trappen, which would
process and spool it and forward it to us when we were connected.

Through trappen, we now had e-mail at home—not just for us, but for anyone
who had accounts on our machines. My whole family has access, and they're
learning to use e-mail and news. (It takes quite a bit of disk space to store news
at home, but I only have a few groups, and I don't keep articles for very long.)

Trappen has plenty of power for all its tasks, though it is pretty slow
interactively. But we have its console, as well as a Wyse terminal in its office. We

decided to make the ultimate use of the console and terminal—as telnet
terminals to other, more powerful machines. We decided to write a program
which would ask for a host to telnet to, which would allow trappen to function
as a terminal server. It turned out to be easy, thanks to the getty_ps package.
Getty_ps is so versatile that we were able to set up configuration files such that
instead of spawning login, it would spawn telnet. We changed the login prompt
accordingly, and voila! Trappen's VGA console is the fastest terminal we have in
the building, especially because it runs over Ethernet. The serial terminal
attached to it is quite handy to check e-mail with.

Everything worked perfectly! We didn't have to touch trappen for a week. In
fact, when we had time we decided to add a few enhancements. We added a
uucp-ftp gateway. Someone can anonymously ftp and place files in a directory
named to computer and trappen will automatically copy the files to a directory
on the machine with that name.

Then we really went all-out. We didn't want to put an entire X-Windows
environment on trappen (it was quite under powered), but it did have a VGA
card. We got the X-Windows server program and all the X-Windows fonts and
copied them over. Then we ran X-Windows with the -query option, which
causes it to be an X-terminal to another machine, in this case to one of our
high-powered machines in the lab. It worked! Trappen didn't have nearly
enough power to run X-Windows applications locally but it wasn't bad as a
graphical terminal. We eventually decided it was too slow, but it did work, and
did not require much disk space.

Trappen is still going strong, over a year after it was “born”. It now allows slip
access for our home machines. The CPU is severely limited in power, and
during interactive use, it is quite slow, but transferring files and telnet sessions
through trappen to other machines is almost instantaneous. Trappen now
supports several users who use it to access the Internet.

UUCP is almost completely error-proof, so when I want to transfer a file
between home and work, I uucp it. Trappen doesn't call out right away, but the
machines connect every few hours. It doesn't matter if it can't connect right
away; uucp always gets through eventually, and I know that when I get home,
the file will be waiting in my incoming directory.

Trent Tuggle is an Engineering student at the University of Central Florida. His
other job is programming virtual reality simulations at the Institute for
Simulation and Training. Between the two of them he doesn't have any time, so
consequently he's into water sports, model airplanes, and music synthesizers.
His e-mail address is tuggle@vsl.ist.ucf.edu.

mailto:tuggle@vsl.ist.ucf.edu

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/toc019.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux In The Real World: Linux Serving IKEA

Anders Östling

Issue #19, November 1995

IKEA has discovered that Linux is a low-cost solution for its TCP/IP networking
needs. Anders Östling tells us the story.

It started by coincidence early last year. We had repeated problems with a
system that sent files to a business partner using a leased line and VMS-based
Kermit. A consultant suggested that we installed a PC with UUCP as
replacement. We agreed, the PC arrived, and guess what operating system I
found on the disk. Right, it was Linux 1.0, our—and my—first experience with a
PC-based Unix system.

Our Organization

For those that don't know IKEA, here is a overview of my company. IKEA is a
retailer of furniture and home interior stuff. We have sites in nearly all
European countries, the US and Canada, and the Far East, including Australia.
These countries are sub-divided into organizational units. Our unit, Northern
Europe (at the moment of this writing), is responsible for managing the stores,
warehouses and offices in 7 European countries. Our headquarters is located in
Helsingborg, in southern Sweden, and this is where I work.

From here, there are network connection to all “our” countries, as well as to the
other IKEA branches. We also have a couple of DEC Alpha systems as central
“mainframes” for common database applications. These systems are critical for
our survival (and so are the network connections to these systems).

New Times, New Network Demands

Like many other companies, we are rapidly evolving our IT structure to more
distributed systems. This means that communication lines that could be cut for
a day or more before without any serious problems, are now becoming
absolutely essential for business.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

In late 1994 and early 1995, we at IKEA Northern Europe restructured our
European network to have faster links, new routers, LANs, etc. From being a
more or less pure DECNET network, we converted more and more to TCP/IP,
since this is the common denominator with our sister organizations worldwide.
While we planned for this big task, we also found that we had to change our IP
addressing and naming in order to avoid havoc. Our decision was to have a
tree-structured DNS [footnote:Domain Name Service] system with the root at
our head office in Helsingborg, Sweden, and secondary DNS servers at each
site. The DNS servers would serve approximately 75 VMS systems, 20 AIX
systems, and hundreds of other PCs and and NT-servers.

Why Linux?

One option was to use an existing VMS or AIX system as primary server, but
since we demand 100% uptime, this was not very attractive. Not that VMS or
AIX systems are unreliable, but they are used for other tasks, which means that
they could be down for many unrelated reasons. We saw that we needed a
dedicated system to avoid problems.

This was one year after our first Linux system; since I had been running Linux
both at home and at work for over a year and was convinced of its usefulness
and stability, I suggested Linux. My boss listened to my arguments, and agreed
to give it a try.

We bought two 486/33 machines with 8 MB ram each, and I started to install
1.1.91 on a rainy day in March. After two days, we had BIND 4.3.9 [footnote:The
nameserver program] up and running, with a second PC as a backup system
should the first PC fail. After running internally for a week, we decided to start
the transformation. The whole tech department spent a weekend changing
more than 300 TCP/IP systems all over Europe. On Monday morning, we had
over 50 secondary DNS servers (mostly VMS systems running TCPware) getting
their information from CYGNUS, the primary server PC. CYGNUS was also
serving approximately 200 IP systems at our headquarters from day one.

For redundancy, all headquarter systems have both “primaries” in their resolver
file. Empirical tests (pulling out the cable) have shown that this works flawlessly.
Another thing is that if CYGNUS breaks completely, we can replace him with
VIRGO, the second PC. In order to make this a bit easier, we rcp all DNS, RCS
and passwd files via cron at regular intervals. All CYGNUS specific files (rc.inet
and such) are also stored safely on VIRGO so it should be fairly easy to switch
identities, if needed.

Hands-On DNS: How we did it

As I mentioned, we use GNU RCS to maintain our DNS files. We have set up one
master file for all IP systems and one reverse-translation file for each country.
All persons allowed to edit these files have their private accounts which gives us
a good overview of who did what, and the ability to reverse their editing in case
they have done something wrong.

IKEA is using the RFC-recommended address 10.x.x.x internally. Each country
has its earlier DECNET area as the second number, so for example, Belgium has
10.14.x.x since they were in DECNET area 14. The third part represents the
location, so Antwerp has 10.14.5.x. This leaves 253 possible hosts for each LAN
or site, and enables us to use class C subnet masking for all countries. Again,
the exception is our headquarters, which has more than 253 hosts. We have
allocated a special “area”, 62, and use a class B subnet mask at headquarters.

The master file is called named.neurope, and the reverse files are called
named.xx, where xx is the ISO code for each country (be, gb, dk, se, nl, and no).
We also have a reverse file for our headquarters, named.hbg, since this is the
single largest “domain”. As an example, Figure 1 contains an edited extract form
this file.

The cache (named.ca) file has entries for our central DNS system (where the
Internet connection is) and for our sister organizations' primary DNS servers.

The boot (named.boot) file has a “forwarders” record which routes all unknown
lookups to our Internet-connected DNS server, as well as a record that states
that we are primary server for our organization.

Our secondary servers (40 VMS hosts) have corresponding files with pointers to
CYGNUS so they know where to “zone-transfer” files and updates from. These
updates takes place at boot and every fourth hour.

Conclusion

Today, system size has increased to well over 700 IP hosts due to the fact that
new LANs with networked NT servers and Windows PCs are popping up every
day of the week. How have CYGNUS and his partner (yes, it's a he) coped with
this? Until today, there has been no problem worth mentioning (aside from a
total power outage which killed both systems). Oh yes: one big problem is to
make people not used to Unix use RCS and vi to manage our DNS files.

Another problem with Linux is that it's too cheap. I'm serious, since many
people still put an equal sign between Cheap/Free and Bad/Dangerous. In the
case of Linux (and XFree86) this has proven to be pure nonsense.

There are some companies here in Sweden offering support for Linux. I think
that this will help to make Linux more socially acceptable; if you find somebody
who is willing to accept a check from you, then you can always shout and yell at
him if there are unsolved problems. Personally, I prefer to have direct contact
with the programmers and designers.

A year later, that system is still running Linux 1.0 and UUCP. There have been a
few problems, all caused by the other UUCP partner (I won't mention any
brands), but all-in-all, everybody was happy. So happy, in fact, that a few of our
techies have also tried Linux out on their own PCs. Some, like me, have kept
Linux for good.

Anders Östling is a die-hard VMS fan who, after spending 10 years in the Digital
farm, has gotten more and more into Unix and networking. When not doing
what he's paid for—managing computers and networks—he likes to cuddle
with his kids, computers, pets and wife (in no particular order...). He lives in the
countryside outside Helsingborg in an old miner's village called Gunnarstorp.
Don't miss it when you are in Sweden! If you have any questions or comments
(general or DNS), he can be reached at anos@ineab.ikea.se.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:anos@ineab.ikea.se
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/toc019.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux at SCO Forum

Belinda Frazier

Issue #19, November 1995

SCO Forum, famous for its fun, casual environment, offered thought-provoking
discussions by Scott Adams, Clifford Stoll and John Perry Barlow. Linux Torvalds
spoke on the future of operating systems.

The ninth annual SCO Forum took place on the University of California Santa
Cruz campus August 20th to 24th, 1995. SCO, Santa Cruz Operations, is the
provider of SCO Unix, billed as “the leading PC-Unix”. SCO also provides other
system software for businesses.

During the Forum, SCO unveiled a new corporate logo to signify its expansion
into new markets, serving the “entire cross-platform world of Unix server and
Microsoft Windows desktop integration.” Many SCO speakers reiterated SCO's
“Windows Friendly” strategy.

Forum tutorials and conference sessions varied from software specific to SCO,
Marketing on the Internet, to the Future of Operating Systems.

The highlight of the sessions included three speakers. Scott Adams, who writes
the Dilbert cartoons, gave a humorous presentation, augmenting some of his
cartoons with the story behind the cartoon. Some of Adams' cartoons had
gotten him into trouble at his former full-time jobs in the computer industry.

Stoll worried about the “cult of computing” noting that schools have converted
their music rooms or their art room into computer labs, noting that, “We are
saying something about what's most important in our society. and it's
computing over music and art... or even history and social interaction.”

Barlow commented about the use of the Internet, “I think we're in the business
of creating what Teilhard de Chardin talked about, writing in the 30's, about the
collective organism of mind, an entirely new layer of the evolutionary process—
evolution that is self aware.”

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

As Barlow eloquently started a statement about how the Internet is “...an
ecosystem for all the creatures of mind,” he was interrupted by Cliff Stoll saying,
“How can you compare the Internet to an ecology? the Internet is a telephone
system!”

Barlow: “Clifford, it was a virtual thought.”

Cliff: “The Internet is a telephone system that's gotten uppity.”

The banter continued between the two about interactions on the Internet
versus “meet (face-to-face interactions in the real world) space”.

Barlow told the audience about a project to establish a virtual conference
facility, with a room in Portland, a huge video screen, and 3-dimensional sound,
so that people could see the body language of people in other places during
the conference. Barlow asked the project coordinator, “Ranji, does it work?”
Ranji said, “Oh, no.” Barlow said. “What's missing? It looks like you have
everything.” Ranji said, “But the Prana, the Prana is missing.” Barlow concluded
the story for the SCO audience explaining “Prana is the Hindu term for breath
and spirit. And I think that the real enterprise here is to find out whether Prana
can ever be fit through a wire.”

Over one-third of the audience raised their hands in response to Linus's
question, “How many of you are actually using Linux or have used Linux
before?”

Linus stated that “The most important point I want to say about the future is
that I personally say that the future is the desktop—or not even maybe the
desktop, but the personal computer.”

Linus added, “if Unix decides to ignore the desktop market and tries to be a
server, even if it's a server that tries to serve desktops, Unix is eventually going
to die. And I think the future is acknowledging that the desktop market is where
it's at.”

“We all know who's the boss on desktop. Certainly today, Microsoft is spending
probably in excess of 200 million dollars on making sure who is King of the hill.
Right? Is that due to technical merit? No, no, people on the desktop have been
used to really crappy operating systems. Unix people who're telling us that they
have a technically superior product obviously aren't doing the right thing,
because on the desktop, technology isn't what matters. What matters is
availability and price. So what we like to have, and what people like to have, [is]
cheap and available, and actual technical merit comes second—actually, it
comes last.”

He went on to mention Free Software, Software Piracy, and of course, he talked
a little about Linux.

“What [Linux] has to give this community is a desktop that doesn't reboot twice
a day—or more often, if you're doing something strange like writing a
document.”

He took technical and other questions in person after the discussion, and the
two SCO technicians sitting next to me were up there first to ask him a
question. Had I not been late to catch a plane, I would have stayed a while
longer and eavesdropped.

Belinda Frazier has been working with Unix for nine years and with publishing
for even longer. She enjoys traveling to Unix and Internet conferences for SSC.
She has recently given up attempting to engage the neighbors' cats and dogs in
a psychological discussion about why they should want to stay out of her
garden.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/toc019.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

IGEL Etherminal 3X

Michael K. Johnson

Issue #19, November 1995

In other words, it is just large enough to hold a monitor.

A low-cost Ethernet-based X terminal, the Etherminal is a box 2.25 inches high,
12.5 inches wide, and about 11 inches deep. In other words, it is just large
enough to hold a monitor. It is powered by a 386 SX-40 processor, 4 (or 8) MB
of RAM, and 2MB of ROM, with video provided by a standard Cirrus Logic video
chip and Ethernet provided by a standard AT/LANTIC chip. Add your favorite
mouse, keyboard, and monitor to the inexpensive base box and plug it into
your Ethernet network (all three common interface types are included), and you
are ready to work. This is standard ISA PC hardware done with an inexpensive
everything-on-the-motherboard approach. Said another way: this is hardware
that can run Linux.

And it does run Linux. While the Etherminal is sold as an inexpensive X
terminal, it is a standalone diskless workstation configured as an X terminal.
Since it is built on freely available software including Linux, XFree86, and fvwm,
IGEL is able to sell it for less than if they licensed any commercial operating
system. Also, since Linux is resource-frugal, they are able to take advantage of
low-performance hardware to make an inexpensive X terminal with reasonable
low-end performance.

This is not a speed demon. Graphics-intensive programs do not run quickly.
This is not a detriment: the Etherminal is optimized for cost, not for speed.
(However, note that it will become faster in the version that IGEL intends to
introduce next year, which will include a 486SX CPU.) If you need a faster, more
capable, and quite possibly less expensive replacement for character-based
terminals, the Etherminal may well meet your requirements, for several
reasons.

First, it is easy to set up, using a built-in graphical configuration utility that
comes up automatically the first time the Etherminal is booted, and can be

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

easily started at any other time. While it can be hosted by remote machines for
centralized administration, it defaults to running on its own, which makes
dropping it on someone's desk—as an easy and inexpensive way of providing X
connectivity—a one or two-minute job. It also has sensible defaults for X-
Windows setup; you will have no need to spend hours fiddling with an
XF86Config file to get X to work right—just be careful not to tell it that you have
a more capable monitor than you actually have, as doing so may be difficult to
recover from quickly. However, the configuration program provides far more
capability than this: multiple languages, keyboards, and boot methods are all
available, among other things.

Second, it does not require any other X-capable machine on the network. Local
terminal sessions to any TCP/IP-capable host are easy to establish.

Third, while the Etherterminal is easy to set up in a “standalone” mode, it is also
just as easy to configure it to depend on XDMCP and remote font servers, to
download its X server from a centralized server, to run a local or remote
window manager, and to do complete centralized maintenance if you wish.
Unlike some X terminals, the Etherminal gives you complete control over this—
and comes set up to work out of the box. It is both “plug-and-play” and
configurable, a useful combination.

Lastly, if you are competent with Linux, you can bring up a “local” shell session.
You will be in a simple shell on a Linux system, able to investigate the file
system, including the /proc file system, able to directly execute the executables
there. This is not usually particularly useful, but IGEL hasn't tried to hide this
from the curious user or administrator, to their credit.

Michael K. Johnson is the Editor of Linux Journal and wishes he had spare time
to spend pretending to be a Linux guru. You can reach him via e-mail at
info@linuxjournal.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/toc019.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Teach Yourself PERL in 21 Days

David Flood

Issue #19, November 1995

Don't let the size of the book intimidate you, though, it's due not to the
complexity of the language, but to the easygoing writing style of the author.

• Author: David Till
• Publisher: Sams Publishing
• ISBN: 0-672-30586-0
• Price: 29.99 USA/39.99 CAN
• Reviewer: David Flood

The 846 pages of Teach Yourself Perl In 21 Days from Sams Publishing—two
inches thick—are intimidating. Don't let the size of the book intimidate you,
though, it's due not to the complexity of the language, but to the easygoing
writing style of the author.

The book is divided into 21 days (chapters) of differing length, three review
sections (at the end of each “week”), several appendixes, and a thorough index.
Each “day” has a discussion of a part of the language, examples (either
complete programs or code fragments), warnings, sections of “Do's and Don'ts,”
and questions or problems at the end. Suggested answers to each “day's”
questions are supplied in an appendix.

I started reading this book with no previous exposure to PERL; by the end of
the second week I was beginning to see places where the language might be
used in real world applications. The examples and discussions were clear and
easy to follow. After completing the book, I started writing a simple application;
so far I've been able to do everything in PERL that I need to do.

Some of the functions of PERL are also directly translatable to other programs.
The discussion of Pattern Matching (Day 7) should be (with author/publisher

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

permission) incorporated into the sed manual page; I'd never been able to get
sed to do what I wanted until I read this chapter.

However, the copy of the book I received had a few problems. It was from the
first printing and had several errors that the proofreaders had missed. Some of
those early in the book would trip up new users of computers. For example, in
the section on ftping the PERL file to install PERL on the reader's machine, a
sample ftp session is presented. In the sample dialogue, the GET command
wasn't followed by a file name: get . When I tried this, ftp told me I needed to
supply a file name. I knew enough to do a ls p* to find the current file and then
type get filename to get it. (I only did the ftp session to test the directions, since
I had already installed PERL from my Slackware CD-ROM.)

Another hazard lies in the discussion of the required first line of a PERL
program #!/usr/local/bin/perl. There is a small discussion of the fact that it
must be the correct path of the PERL interpreter, but the only advice given is to
talk to your System Administrator. Since several folks are their own System
Administrator, this might cause problems. Since there are already “Unix Only”
discussions in some of the chapters, a small discussion of the which command
would be a welcome addition.

I was able to detect at least one error for every two chapters. Upon requesting
an errata sheet from the publisher via their area on CompuServe (which they
advertise in the book), I was informed that they would get back to me. A week
later, they still hadn't. Since files containing errata for some of their other books
are available from the area, I presume that the book is still too new for a sheet
to have been compiled.

The only other problem that I have with the book is its classification of “User
Level: Beginning—Intermediate.” Since I have taken classes in both C and Ada, I
was able to relate some of the concepts that I had learned to this language.
However, as I pointed out before, some of the ideas presented are definitely
not for beginning computer users.

Generally, I would recommend this book for any person who wants to learn
PERL. But this is not the book for a person who is attempting to learn a first
programming language.

David Flood is currently a student in the School of Drama at the University of
Washington. He plans to graduate sometime in 1996 and to get a real job. He is
reachable (for now) at dcflood@u.washington.edu.

Archive Index Issue Table of Contents

 Advanced search

mailto:dcflood@u.washington.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/toc019.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

ELF is on the Way

Michael K. Johnson

Issue #19, November 1995

Debian has had ELF support for its standard distribution available to
developers and all other interested parties for several months, and some of the
debian developers are working on ELF issues.

Nearly all the major Linux distributions have announced some support for ELF,
and some have beta versions available on the Internet. Red Hat, Slackware, and
Yggdrasil have each announced that alpha or beta level ELF-based distributions
are available from their standard FTP sites. By the time you read this, all three
expect to be shipping production-quality ELF-based distributions.

Debian has had ELF support for its standard distribution available to
developers and all other interested parties for several months, and some of the
debian developers are working on ELF issues. The current release is a.out-
based, but users will be able to upgrade to ELF without re-installing the
distribution. This in-place upgradability has been included in Debian for a long
time, and has been well tested. Debian can be retrieved via FTP from
ftp.debian.com and mirrors including tsx-11.mit.edu and its mirrors worldwide.

Red Hat's beta is available via FTP from ftp.pht.com, ftp.caldera.com, and other
mirrors, and is being tested as of late August and early September. Red Hat has
committed to a production-quality release in September to support the second
preview release of the Caldera Network Desktop, which is built on top of Red
Hat's distribution.

For several months, Slackware has provided Slackware 2.3 in a.out format and
a beta-quality ELF distribution as well. Slackware's ELF distribution is unusual in
retaining an a.out boot disk for installation. Slackware, including the ELF beta, is
always available from ftp.cdrom.com.

Yggdrasil avoided releasing a new release of their Plug and Play Linux this
spring, and instead put their resources into developing an all-ELF distribution.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

That beta-quality distribution was made available for FTP from
ftp.yggdrasil.com in August.

Linux Journal is not officially recommending any one particular distribution. We
will (finally!) be publishing a very comprehensive overview of the most common
distributions early next year, which should allow readers to make their own
more informed decisions, based partly on the information LJ provides.

In other news...

DEC has announced that they have ported the XFree86 XF86_SVGA server to
Linux/Alpha. This alpha-quality release is not guaranteed to work on all S3
boards, but X support for Linux/Alpha does now exist.

Jim Freeman announced that he has written a pre-alpha Linux Frame Relay
driver is available for the Sangoma S502 Frame Relay card (a Z80 co-processed
ISA card) from ftp://ftp.sovereign.org/pub/wan/fr/s502fr.tgz and ftp://
www.caldera.com/pub/wan/fr/s502fr.tgz (new versions may be available by the
time you read this). See http://www.sovereign.org/ for current information.

Vipul Gupta and Ben Lancki introduced alpha support for Mobile-IP for Linux.
Patches are available at the ftp site anchor.cs.binghamton.edu in /pub/Linux-
MobileIP/Linux-MobileIP.tar.gz

What is ELF?

ELF, which stands for Executable and Linking Format, is the new binary file
format which has been implemented for Linux. Previously, Linux has used a
version of the old “a.out” format, but that format has many limitations that ELF
corrects. ELF was originally designed for UNIX System V Release 4, and for
various reasons (technical and political) is becoming the most popular binary
file format for UNIX and related operating systems such as Linux.

The Linux ELF implementation has been approximately two years in the
making, and is of very high quality. Most of the ELF support in the GNU utilties
was done by Linux developers to support this implementation.

Linux distributors are working to make the change to ELF as painless as
possible for Linux users.

For more information on ELF, see Linux Journal issue 16 (August 1995) Stop The
Presses for a light explanation, and issues 12 and 13 (April and May 1995) for a
technical overview of the ELF file format.

http://www.sovereign.org

ELF-based or “Supports ELF”?

What“s the difference? ELF-ased means that all (or perhaps almost all) of the
binaries and libraries in the system use the ELF file format. ”Supports ELF"
merely means that ELF libraries are included, so Linux binaries created for ELF
systems will run. An ELF-based Linux distribution may also support a.out
binaries by including the a.out libraries.

You only need a distribution that supports ELF in order to run ELF binaries.
However, if you are running both a.out and ELF binaries at the same time, it
requires a bit more memory than if you are only running one or the other, so if
you need to run some ELF binaries, you are probably better off switching to a
completely ELF<\#45>based distribution if you have the time to do so.

Some distributions (particularily Debian) give you the option to upgrade from
a.out to ELF with ease. Red Hat has promised a floppy disk that you can use to
record the most important parts of your current configuration (such as your
carefully<\#45>tuned X Windows setup and networking configuration), which
will be used to automatically recreate your configuration when installing Red
Hat. This should work for upgrading from any distribution.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/toc019.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

LJ Staff

Issue #19, November 1995

Red Hat Linux Developers Package, CE Editor for Linux and more.

Red Hat Linux Developers Package

Red Hat Software announced the Red Hat Developers Package, a Linux product
and support program for software developers. The program includes monthly
CD-ROM updates of Red Hat Commercial Linux and e-mail technical support,
documentation, and Linux news. Price: $399 per year.

Contact: Red Hat Software, PO Box 3364 Westport CT 06880, Phone:
203-454-5500, Fax: 203-454-2582 E-mail: bob@redhat.com
Web:www.redhat.com.

CE Editor for Linux

Enabling Technologies Group announced the availability of their latest version
of the ARPUS/ce editor FREE for the Linux Operating System. “ce” is a full-
screen, X-Windows based editor that provides easy-to-use text editing across a
variety of UNIX platforms. Developed originally for users migrating from
Apollo's Domain environment, ce was modeled after the Display Manager
editor. ETG has incorporated the features of the DM editor that Apollo users
liked best with new features. Some features of ce include: ceterm, multiple edit
sessions, rectangular cut & paste, global bounded search and replace,
coordinated mouse and text cursor control, command macros, unlimited
UNDO & REDO, customized keyboard mapping, vertical and horizontal scrolling,
and automatic file backup and save.

To get your FREE copy of ce for Linux, do an anonymous FTP to: ftp.std.com; cd
to /ftp/vendors/ETG; and get the README file for detailed instructions. In this
location, you will find the FREE Linux copy and also evaluation copies of ce for
other vendors' platforms.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:bob@redhat.com
http://www.redhat.com

Contact: Enabling Technologies Group, Inc. 8601 Dunwoody Place, Suite 300
Atlanta, Georgia 30350. Phone: 404-642-1500 FAX: 404-993-4667 E-mail:
arpus@etginc.com

Mathematica for Linux

Wolfram Research is now shipping a new version of Mathematica for Linux.
With Mathematica running under Linux, users can take advantage of
Mathematica's extensive numeric and symbolic capabilities, 2D and 3D
graphics, a high-level programming language, as well as the many Mathematica
applications available. Mathematica for Linux includes support for MathLink via
TCP/IP. MathLink, Wolfram Research's communication standard, lets users
make seamless connections between Mathematica, their own applications, and
other commercially available software. With MathLink it is possible to exchange
information between Mathematica and other programs either on one machine
or among several machines on a network.

Contact: Wolfram Research, Inc. Phone: 800-441-6284 or 217-398-0700 E-mail:
info@wri.com WWW www.wri.com

Contact: Wolfram Research Europe Ltd. Phone: +44-(0)1993-883400. E-mail:
info-euro@wri.com

Contact:Wolfram Research Asia Ltd. Phone: 81-3-526-0506 E-mail: info-
asia@wri.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:arpus@etginc.com
mailto:info@wri.com
http://www.wri.com
mailto:info-euro@wri.com
mailto:info-asia@wri.com
mailto:info-asia@wri.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/toc019.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux System Administration: Using LILO, The Linux

Loader

Æleen Frisch

Issue #19, November 1995

This excerpt from Essential System Administration describes useful details of
booting Linux on a PC.

In general, the boot process on a microcomputer has three stages: the system's
master boot record (MBR) contains the primary boot program which starts the
boot process and loads a secondary boot program from the boot blocks of the
active partition; this second boot program is what loads the actual kernel.

Linux provides LILO, the Linux Loader, which can function as either a master
boot program or a secondary boot program. lilo is installed with a command
like this one:

lilo -C /etc/lilo.conf

The -C option specifies the location of LILO's configuration file. (The location in
the preceding command is, in fact, the default location, and so the -C clause is
redundant.)

The lilo.conf file specifies LILO's behavior for certain aspects of the boot
process and also defines the kernels and operating systems that it can boot.
The following excerpt from a lilo.config file lists the most important entries—
and the ones that you are most likely to want or need to modify:

Wait 10 seconds before autobooting 1st entry.timeout=100
Allow user to enter a boot command.
prompt
Where to install/configure LILO
(no partition #=MBR) [see below]
boot=/dev/hda
...
Text file displayed before boot prompt.
message = /boot/boot.message
#
Default kernel is the first one listed.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

image = /vmlinuz
Boot prompt command to boot this kernel.
 label = linux
Fix for Sony CD-ROM (post 1.1.72)
Specifies parameters to pass to kernel,
changing CD-ROM's compiled-in I/O address.
 append = "cdu31a=0x340,0,"
#
An alternate Linux kernel
image = /safe
Its boot command
 label = safe
 append = "cdu31a=0x340,0,"
...
A different operating system (DOS)
other = /dev/hdb1
Use the D: drive boot loader.
 loader = /boot/any_d.b
Use this partition table.
 table = /dev/hdb
This is the corresponding boot command.
 label = ddog

[I tend to install LILO both in the MBR and the Linux partition for maximum
flexibility, by running a second LILO command using its -b option (which
replaces the boot entry in the configuration file):# lilo -b /dev/hda1 -C /etc/

lilo.confThis way, if I decide to remove LILO from the MBR, I'll be all set to
switch over to the Linux partition version.]

The final section (“stanza”) illustrates the format for booting a DOS partition on
the second hard disk; it uses an alternate loader, any_d.b, which tricks DOS into
thinking it's on the C: drive. There are also loaders provided for OS/2 on the D:
drive and DOS on the B: drive (os2_d.b and any_b.d, respectively; chain.b is the
default loader for other operating systems).

If the label for a stanza is omitted, it defaults to the final component of the
image or other entry (for example, vmlinuz or hda1).

The entry for a DOS partition on the C: drive is simpler, looking something like
this:

other = /dev/hda1 label = dos
 table = /dev/hda

This stanza is actually what you need for any foreign operating system on /dev/
hda1. There is one additional trick needed if SCO Unix is the operating system
you want to boot. In order for LILO to successfully boot a SCO Unix partition,
that partition must be the only active partition on the C: drive. This means you
will have to turn off the active (boot) flag on the Linux partition and turn it on
for the SCO Unix partition, using the Linux fdisk or cfdisk, before trying to boot
SCO Unix (in addition to running LILO to install the new configuration). Note
that LILO must be the master boot loader in this case.

Note: You will need to rerun the LILO command to reinstall it every time you
rebuild the kernel or change any relevant aspect of the disk partitioning

scheme. If you forget to do this, the system will not boot and you'll have to boot
from a floppy. You will also need to rerun LILO if you change the text of the
boot.message file.

More Complex Booting Scenarios

Booting a Linux partition on the second hard drive is also possible. For this to
work, LILO must be installed in the MBR of the system's boot disk, as well as the
secondary boot program in the Linux partition itself—this is usually taken care
of when you install Linux on the hard disk and will be assumed in what follows.
In this case, the best way to proceed is in two stages:

• First, set up a lilo.conf like this one:
boot=/dev/hdaroot=current
image=/vmlinuz
 label=linux
other=/dev/hda1
 unsafe
other=/dev/hda2
 unsafe
...
other=/dev/hdb4
 unsafe

• Define all of the partitions on both hard disks in the same way; the unsafe
keyword tells LILO not to read the boot blocks or the disk's partition table
for that entry—it basically says, “Trust me and do what I tell you.” Install
this LILO configuration, and make sure that Linux is bootable.

• Then, modify the file, changing entries for any bootable partitions on /
dev/hda to their correct form and removing ones you don't need, and
rerun the LILO command.

It is also possible to boot a Linux partition on each of two disks. The procedure
for doing so is the following:

• Decide which one will be the usual Linux boot partition and set up LILO to
boot it and any other non-Linux operating systems on both disks. Create
an entry like the following for the second Linux partition:

other = /dev/hdb2 label=eviltwin
 unsafe

• Create a boot.message file which tells you which Linux will be booted
when you select the default option. Install this configuration into the MBR
on the C: drive.

• Create (or retain) another LILO configuration for the second Linux
partition, this time including an unsafe entry for the first Linux partition if
you want to (this again assumes that LILO is installed in that partition,
which usually happens at upon installation of the OS). Make sure that this
partition's boot.message file also lets you know where you are. Install this

configuration into the Linux partition only—make sure that the boot entry
specifies the partition and not the disk as a whole.
The boot sequence will then go something like this:

Welcome to gallant.Boot choices: linux (default; on C:), dos,
 eviltwin (Linux on D:), sco
boot: eviltwin
Welcome to goofus.
Boot choices: test (default; on D:), goodtwin (Linux on C:)
boot: [Return]
Loading test...

Given these selections, Linux will boot from the D: drive. What happens is the
LILO from the MBR on drive C: runs first, and it then starts the boot program on
the Linux partition on the D: drive—which is again LILO. That (second) LILO
then loads the kernel from the D: drive. (Note that if you wanted to, you could
just keep popping back and forth between the LILO programs on C: and D: ad
infinitum.)

If you think this is pretty silly, then omit the prompt keyword from the LILO
configuration file for the D: drive (as well as its image section for the Linux
partition on the C: drive), resulting in a simple lilo.conf file on the D: drive:

install=/boot/boot.bboot=/dev/hdb2
root=/dev/hdb2
map=/boot/map
image=/vmlinuz
 label=linux

Once this is installed, selecting eviltwin at the initial boot prompt will
immediately boot the Linux partition on the second hard disk.

LILO's -r option

Sometimes it is useful to be able to run LILO for a disk partition mounted
somewhere other than /. For example, if you have another Linux root
filesystem mounted at /mnt, you might want to run LILO to install the kernel
(currently) at /mnt/vmlinuz using the configuration file /mnt/etc/lilo.conf. LILO's
-r option is designed for such a purpose. It sets the root directory location for
the LILO operation to the directory specified as its argument and looks for all
files relative to that point. Thus, for the scenario we've been discussing, the
correct command is:

lilo -r /mnt

The boot.message File

The boot.message file is displayed before the boot prompt is issued. Here is an
example boot.message file:

Welcome to JAG Property of the Linux Guerrilla Hackers
AssociationComputational science is not for the fainthearted!
Our current boot offerings include:
 * linux (smaller test kernel--1.3.10 currently)
 * safe (Yggdrasil distribution)
 * hacked (do you feel lucky?)
 * ddog - guess what ... (on D:)

An effective file will list all the defined labels (but it needn't be this eccentric).

Restoring the DOS Master Boot Program

Should you ever need to, here is the procedure for restoring the DOS master
boot program:

• Boot from a bootable DOS floppy.
• Run the command fdisk /MBR

The Linux-FT Bootmanager

The Linux-FT distribution replaces the entire LILO apparatus with its
Bootmanager facility, a graphical menu-based, user-configurable utility by
which you can select which kernel to boot. Its display looks something like this:

 Bootmanager
 Name Location
MULTIUSER :3/vmlinuz ro root=/dev/sda3 2
SINGLE :3/vmlinuz ro root=/dev/sda3 single
FLOPPY A:
INSTALL :3/vmlinuz root=/dev/sr0 ramdisk=300 5
DOS C:1
LUCKY :4/test_kern ro root=/dev/sda4

The Location field indicates the kernel to boot. For example, the MULTIUSER
item will boot the file /vmlinuz on the third disk partition of the current disk,
using the indicated device as the root filesystem, booting to run level 2. The
DOS item will boot partition 1 on the first hard disk (C:). The final item is one
added for this system.

Customizing the Bootmanager is easy. Press ESC to override the automatic
boot timeout, and then use the cursor and function keys listed at the bottom of
the screen to edit the relevant fields. Hardware options applicable to all boot
sequences may be entered into the designated field below the boot choices
menu.

Introducing Linux Loadable Modules

Very recently (since version 1.2), the Linux kernel has supported loadable
modules. As of this writing, the Debian and Linux-FT distributions use this
functionality by default.

In this scheme, you build a minimal kernel and dynamically load modules
providing additional functionality as required. Such an approach has the
advantage that many types of system changes will no longer require a kernel
rebuild; it also has the potential to significantly decrease the size of the kernel
executable.

The modules package provides utilities for building, installing and loading
kernel modules (including ones needed to build a kernel with module support).
Running make modules after building a kernel will create the loadable modules
files, and make modules_install will install them into the /lib/modules/1.2.6
directory tree (where the final component denotes the kernel release level). The
configuration file /etc/MODULES (or /etc/modules) lists modules to be loaded
automatically at boot time:

sysviBCS
ppp

This file says to load the modules supporting the System V filesystem type, the
Intel Binary Compatability facility, and the PPP facility.

The following utilities are used to manipulate modules:

• depmod: Determines dependencies among modules. For example, the
ppp module I selected earlier requires the slhc module to function.
depmod creates the file modules.dep in the relevant subdirectory of /lib/
modules. This utility may be run automatically at boot time or you may
need to execute it manually after building modules.

• modprobe: Loads a module as well as all of those that it depends on
(usually used to load modules on boots).

• insmod: Loads a module interactively.
• rmmod: Unloads a loaded module from the kernel (provided it is not in

use).
• lsmod: Lists currently-loaded modules:

Module: # pages: Used by:iBCS 19
ppp 5
slhc 2 [ppp]
sysv 7

At this point, the loadable modules facility is in its infancy, and only a few
modules are available, but this will undoubtedly be the way Linux kernels
generally operate in the not-too-distant future (and it is the way many other
Unix versions already work).

Reprinted with minor alterations by permission from
Essential System Administration—Edition 2, copyright
© 1995, O'Reilly and Associates, Inc. For orders and
information call 800-998-9938 or 707-829-0515.

Æleen Frisch (aefrisch@lorentzian.com) manages a very heterogeneous
network of Linux and other Unix systems and PCs. After finally finishing the
second edition of Essential System Administration, she has gone back to her
true calling in life, pulling the string for her cats, Daphne and Sarah.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:aefrisch@lorentzian.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/019/toc019.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News & Articles
	Reviews
	Columns
	Optimizing Linux's User Interface
	Jeff Arnholt
	The Command Line
	Rxvt
	Tcsh
	Fvwm
	GoodStuff
	Conclusions

	LessTif and the Hungry Viewkit
	Malcolm Murphy

	Getting the Most Out of X Resources
	Preston Brown
	What are X Resources Useful For?
	Resource Files
	Specifying a Resource
	Viewing, Changing, and Loading Resources
	Some Examples

	How to Build a Mac
	Andreas Schiffler
	David Moody

	The Best Without X
	Alessandro Rubini
	Configuring the Mouse Device
	How Does gpm Work?
	Configuring the Keyboard
	Spawning New Consoles
	What's the Difference?
	Changing the Text Mode
	Problems Related to Console Resizing
	Tools for the Text Console
	Further Readings

	Linux on Low-End Hardware
	Trenton B. Tuggle

	Linux In The Real World: Linux Serving IKEA
	Anders Östling
	Our Organization
	New Times, New Network Demands
	Why Linux?
	Hands-On DNS: How we did it
	Conclusion

	Linux at SCO Forum
	Belinda Frazier

	IGEL Etherminal 3X
	Michael K. Johnson

	Teach Yourself PERL in 21 Days
	David Flood

	ELF is on the Way
	Michael K. Johnson
	In other news...
	What is ELF?
	ELF-based or “Supports ELF”?

	New Products
	LJ Staff
	Red Hat Linux Developers Package
	CE Editor for Linux
	Mathematica for Linux

	Linux System Administration: Using LILO, The Linux Loader
	Æleen Frisch
	More Complex Booting Scenarios
	LILO's -r option
	The boot.message File
	Restoring the DOS Master Boot Program
	The Linux-FT Bootmanager
	Introducing Linux Loadable Modules

